Improved Ultra-Low Cycle Fatigue Fracture Models for Structural Steels Considering the Dependence of Cyclic Damage Degradation Parameters on Stress Triaxiality

Author(s):  
Shuailing Li ◽  
Xu Xie ◽  
Qin Tian ◽  
Cheng Cheng ◽  
Zhicheng Zhang
2018 ◽  
Vol 30 (11) ◽  
pp. 04018280 ◽  
Author(s):  
Fei Yin ◽  
Lu Yang ◽  
Liang Zong ◽  
Xiyue Liu ◽  
Yuanqing Wang

2013 ◽  
Vol 721 ◽  
pp. 12-15 ◽  
Author(s):  
Xian Liang Sun ◽  
Ai Qin Tian ◽  
Wen Bin Chen ◽  
San San Ding ◽  
Shang Lei Yang

The fatigue fracture and the microstructure of Al5Zn2Mg high strength aluminum alloy were observed by OM, SEM and TEM, and the low cycle fatigue properties were tested and analyzed. The results of experimentation show that the low cycle fatigue life of Al5Zn2Mg high strength aluminum alloy is 9.28×104 cycle in R=0.1, f=8Hz, and σmax=0.75σb. The tensile strength is 444MPa. The fatigue fracture is composed of the initiation zone, the propagation zone, and the sudden fracture zone, which is characteristic of a mixed-type fatigue fracture. The fatigue crack initiates in the surface of Al5Zn2Mg aluminum alloy sample, while there is no fatigue striation in fatigue crack propagation zone. The η′(MgZn2) transitional strengthening phases are precipitated in Al5Zn2Mg aluminum alloy, and mostly distributed in grain boundary. The diameter of η′ strengthening phase is fine, about is 10nm. There is none precipitated zone in width nearby the grain boundary


2020 ◽  
Vol 169 ◽  
pp. 106060
Author(s):  
Zeshen Li ◽  
Jinjun Xu ◽  
Cristoforo Demartino ◽  
Keshi Zhang

2016 ◽  
Vol 697 ◽  
pp. 652-657
Author(s):  
Rong Guo Zhao ◽  
Yi Yan ◽  
Yong Zhou Jiang ◽  
Xi Yan Luo ◽  
Qi Bang Li ◽  
...  

At room temperature, the low cycle fatigue tests for smooth specimens of TC25 titanium alloy under various stress ranges are operated at a CSS280I-20w Electro Hydraulic Servo Universal Testing Machine with a microscopic observation system, and the low cycle fatigue lifetimes are measured. Based upon the analysis of stress-strain hysteresis loop of low cycle fatigue of TC25 titanium alloy, a simplified Manson-Coffin formula is derived according to both the experimental characteristics and the stress-strain constitutive model, the fatigue lifetimes are plotted against stress ranges, and a stress-fatigue life curve for TC25 titanium alloy is obtained by the linear regression analysis method. Finally, the fracture surface morphologies of TC25 specimens are investigated using a JSM-6360 Scanning Electron Microscopy, and the fatigue fracture mechanisms of low cycle fatigue are studied. It shows that the plastic deformations are mainly formed at the accelerated fracture stage, and various shear lips can be observed on the fracture surfaces, which demonstrates that the shear stress results in the final rupture of TC25 titanium alloy. During the fracture of low cycle fatigue, the cleavage nucleation leads to the formation of fatigue crack initiation region, the fatigue crack growth exhibits a mixed transgranular and intergranular crack growth mode, and in the final rupture region, the fracture surface of low cycle fatigue of TC25 titanium alloy appears as a typical semi-brittle fracture mode.


Sign in / Sign up

Export Citation Format

Share Document