cyclic damage
Recently Published Documents


TOTAL DOCUMENTS

100
(FIVE YEARS 23)

H-INDEX

10
(FIVE YEARS 2)

Author(s):  
Siya Rimoy ◽  
Matias Silva ◽  
Richard J. Jardine

Uncertainties regarding the axial cyclic behaviour of piles driven in sands led to an extended programme of calibration chamber instrumented pile experiments. Broad trends are identified and interpreted with reference to normalised cyclic loading parameters Qcyclic/QT, Qmean/QT and N. Cyclic damage is shown to be related to changes in the radial effective stress regime close to the shaft. While stable loading leads to little or no change as cycling continues in the sand masses’ effective stress regime, high-level cyclic loading can affect stresses far out into the sand mass. The test systems’ chamber-to-pile diameter ratio has a significant impact on outcomes. Piles installed in loose, fine, sand are far more susceptible to cyclic loading than in denser, coarser sand. Little or no change in pile stiffness was seen in tests that remained within the stable cyclic region, even over 10,000 or more cycles. Unstable tests lost their stiffness rapidly and metastable cases showed intermediate behaviours. The permanent deflections developed under cycling depend on the combined influence of Qcyclic/QT, Qmean/QT and N. While model tests provide many valuable insights into the behaviour of piles driven in sand, they are unable to capture some key features observed in the field.


Author(s):  
Z. Mustafa ◽  
T. M. I Nawi ◽  
S.H.S.M. Fadzullah ◽  
Z. Shamsudin ◽  
S. D. Malingam ◽  
...  

Although there is a perpetual interest in natural fibre composite, the fatigue data and their durability behaviour is still lacking, thus limiting their potential use in high-end applications. In this study, wood polymer composite made from rubberwood flour and recycled polypropylene was subjected to a tension-tension fatigue test in order to investigate their fatigue characteristic. Hysteresis loop was captured in order to establish their stress to number of failure (S-N) curve. The fatigue strength of the composite strongly depends on the stress amplitude. At the lowest stress level, the fatigue life of the composite exceeds the 1.5 million cycles limit, suggesting that the endurance limit for composite materials to be 11.06 MPa. The residual modulus and energy dissipated are plotted as a function of number of fatigue cycles. As the cycles progress, the residual modulus fall and dissipated energy increase indicated the cyclic damage in the composite structure. Two parameters Weibull probability were used to statically analyse the fatigue life and reliability of the rubberwood/recycled polypropylene composite. The S-N curve was plotted at different reliability index (RI = 0.1, 0.368, 0.5, 0.9, 0.99) using Weibull data. This data is used to identify the first failure time and design limits of the materials.


2021 ◽  
Vol 51 (3) ◽  
pp. 65-73
Author(s):  
Serhii Pashchenko ◽  
Artem Shulhin ◽  
Volodimyr Samuleev ◽  
Оleksandr Lobunko ◽  
Оleg Dobridenko

Abstract The operational technique for the major components of the fighter aircraft engine rotors has been introduced basing on the real conditions of their cyclic loading in each flight or ground test and a priori information on their previous operation. It has been confirmed that the obtained technical solutions not only conform to the current methods of accounting for the depletion of the life cycle of the Afterburning Turbofan Engine (ATE) but also introduce additional opportunities to consider individual characteristics and conditions of their cyclic loading throughout the overall operating time. A method for estimating the depletion of the life cycle in accordance with the Total Accumulated Cycle (TAC) has been proposed. It allows us to compare the actual operating time of the ATE in hours and the accumulated value of cyclic damage to the engine and its major components (within the TAC parameter) during the previous operation.


Author(s):  
Stephanie Khuu ◽  
Justin W. Fernandez ◽  
Geoffrey G. Handsfield

Cerebral palsy is a neuromusculoskeletal disorder associated with muscle weakness, altered muscle architecture, and progressive musculoskeletal symptoms that worsen with age. Pathological changes at the level of the whole muscle have been shown; however, it is unclear why this progression of muscle impairment occurs at the cellular level. The process of muscle regeneration is complex, and the interactions between cells in the muscle milieu should be considered in the context of cerebral palsy. In this work, we built a coupled mechanobiological model of muscle damage and regeneration to explore the process of muscle regeneration in typical and cerebral palsy conditions, and whether a reduced number of satellite cells in the cerebral palsy muscle environment could cause the muscle regeneration cycle to lead to progressive degeneration of muscle. The coupled model consisted of a finite element model of a muscle fiber bundle undergoing eccentric contraction, and an agent-based model of muscle regeneration incorporating satellite cells, inflammatory cells, muscle fibers, extracellular matrix, fibroblasts, and secreted cytokines. Our coupled model simulated damage from eccentric contraction followed by 28 days of regeneration within the muscle. We simulated cyclic damage and regeneration for both cerebral palsy and typically developing muscle milieus. Here we show the nonlinear effects of altered satellite cell numbers on muscle regeneration, where muscle repair is relatively insensitive to satellite cell concentration above a threshold, but relatively sensitive below that threshold. With the coupled model, we show that the fiber bundle geometry undergoes atrophy and fibrosis with too few satellite cells and excess extracellular matrix, representative of the progression of cerebral palsy in muscle. This work uses in silico modeling to demonstrate how muscle degeneration in cerebral palsy may arise from the process of cellular regeneration and a reduced number of satellite cells.


2021 ◽  
Author(s):  
Prasanth Chandrasekar

Engineering materials in their service life undergo symmetric or asymmetric fatigue loading, which leads to fatigue damage in the material. Ratcheting damage is due to the application of mean stress under cyclic loading condition. From deformation behavior perspective, application of mean stress under stress-controlled fatigue loading gives rise to accumulation of plastic strain in the material. Ratcheting strain increases with an increase in applied mean stress and stress amplitude. In addition, ratcheting behavior will increase in cyclic damage with the rise in strain accumulation and it can be illustrated by a shift in the hysteresis loop towards large plastic strain amplitudes. This study focuses on the ratcheting behavior of different steel materials under uniaxial cyclic loading condition and suggests a suitable method to arrest ratcheting by loading the materials at zero ratcheting strain rate condition with specified mean stress and stress amplitudes. The three dimensional surface is created with stress amplitude, mean stress and ratcheting strain rate for different steel materials. This represents a graphical surface zone to study the ratcheting strain rates for various mean stress and stress amplitude combinations.


2021 ◽  
Author(s):  
Prasanth Chandrasekar

Engineering materials in their service life undergo symmetric or asymmetric fatigue loading, which leads to fatigue damage in the material. Ratcheting damage is due to the application of mean stress under cyclic loading condition. From deformation behavior perspective, application of mean stress under stress-controlled fatigue loading gives rise to accumulation of plastic strain in the material. Ratcheting strain increases with an increase in applied mean stress and stress amplitude. In addition, ratcheting behavior will increase in cyclic damage with the rise in strain accumulation and it can be illustrated by a shift in the hysteresis loop towards large plastic strain amplitudes. This study focuses on the ratcheting behavior of different steel materials under uniaxial cyclic loading condition and suggests a suitable method to arrest ratcheting by loading the materials at zero ratcheting strain rate condition with specified mean stress and stress amplitudes. The three dimensional surface is created with stress amplitude, mean stress and ratcheting strain rate for different steel materials. This represents a graphical surface zone to study the ratcheting strain rates for various mean stress and stress amplitude combinations.


Author(s):  
Farah Hamandi ◽  
Alyssa Whitney ◽  
Mark H. Stouffer ◽  
Michael J. Prayson ◽  
Jörn Rittweger ◽  
...  

Background: The purpose of this study was to evaluate the risk of peri-prosthetic fracture of constructs made with cephalomedullary (CM) long and short nails. The nails were made with titanium alloy (Ti-6Al-4V) and stainless steel (SS 316L).Methods: Biomechanical evaluation of CM nail constructs was carried out with regard to post-primary healing to determine the risk of peri-implant/peri-prosthetic fractures. Therefore, this research comprised of, non-fractured, twenty-eight pairs of cadaveric femora that were randomized and implanted with four types of fixation CM nails resulting in four groups. These constructs were cyclically tested in bi-axial mode for up to 30,000 cycles. All the samples were then loaded to failure to measure failure loads. Three frameworks were carried out through this investigation, Michaelis–Menten, phenomenological, and probabilistic Monte Carlo simulation to model and predict damage accumulation.Findings: Damage accumulation resulting from bi-axial cyclic loading in terms of construct stiffness was represented by Michaelis–Menten equation, and the statistical analysis demonstrated that one model can explain the damage accumulation during cyclic load for all four groups of constructs (P > 0.05). A two-stage stiffness drop was observed. The short stainless steel had a significantly higher average damage (0.94) than the short titanium nails (0.90, P < 0.05). Long titanium nail group did not differ substantially from the short stainless steel nails (P > 0.05). Results showed gender had a significant effect on load to failure in both torsional and bending tests (P < 0.05 and P < 0.001, respectively).Interpretation: Kaplan–Meier survival analysis supports the use of short titanium CM nail. We recommend that clinical decisions should take age and gender into consideration in the selection of implants.


2020 ◽  
Vol 116 ◽  
pp. 104732
Author(s):  
Gabriel Fedorko ◽  
Vieroslav Molnár ◽  
Peter Blaho ◽  
Jozef Gašparík ◽  
Vladislav Zitrický

Sign in / Sign up

Export Citation Format

Share Document