scholarly journals Serotonin Syndrome: A Real Risk of Anti-migraine Therapy

2020 ◽  
Vol 57 (9) ◽  
pp. 872-872
Author(s):  
Inder Kumar Sharawat ◽  
Prateek Kumar Panda
2006 ◽  
Vol 34 (11) ◽  
pp. 8
Author(s):  
ELIZABETH MECHCATIE
Keyword(s):  

2009 ◽  
Vol 40 (01) ◽  
Author(s):  
D Keeser ◽  
L Tiemann ◽  
M Valet ◽  
E Schulz ◽  
M Ploner ◽  
...  

2016 ◽  
Vol 12 (01) ◽  
pp. 58-61
Author(s):  
Nantawan Tinroongroj ◽  
Apichard Sukonthasarn

2013 ◽  
Vol 14 (5) ◽  
pp. 386-392 ◽  
Author(s):  
Lars Edvinsson ◽  
Karin Warfvinge

2020 ◽  
Vol 18 (10) ◽  
pp. 758-768 ◽  
Author(s):  
Khadga Raj ◽  
Pooja Chawla ◽  
Shamsher Singh

: Tramadol is a synthetic analog of codeine used to treat pain of moderate to severe intensity and is reported to have neurotoxic potential. At therapeutic dose, tramadol does not cause major side effects in comparison to other opioid analgesics, and is useful for the management of neurological problems like anxiety and depression. Long term utilization of tramadol is associated with various neurological disorders like seizures, serotonin syndrome, Alzheimer’s disease and Parkinson’s disease. Tramadol produces seizures through inhibition of nitric oxide, serotonin reuptake and inhibitory effects on GABA receptors. Extensive tramadol intake alters redox balance through elevating lipid peroxidation and free radical leading to neurotoxicity and produces neurobehavioral deficits. During Alzheimer’s disease progression, low level of intracellular signalling molecules like cGMP, cAMP, PKC and PKA affect both learning and memory. Pharmacologically tramadol produces actions similar to Selective Serotonin Reuptake Inhibitors (SSRIs), increasing the concentration of serotonin, which causes serotonin syndrome. In addition, tramadol also inhibits GABAA receptors in the CNS has been evidenced to interfere with dopamine synthesis and release, responsible for motor symptoms. The reduced level of dopamine may produce bradykinesia and tremors which are chief motor abnormalities in Parkinson’s Disease (PD).


1986 ◽  
Vol 79 (7) ◽  
pp. 424-426 ◽  
Author(s):  
F W Eigler ◽  
K Schaarschmidt ◽  
E Gross ◽  
H J Richter
Keyword(s):  

Antibiotics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 671
Author(s):  
Federica Giacometti ◽  
Hesamaddin Shirzad-Aski ◽  
Susana Ferreira

Antimicrobial resistance (AMR) is a global problem and there has been growing concern associated with its widespread along the animal–human–environment interface. The farm-to-fork continuum was highlighted as a possible reservoir of AMR, and a hotspot for the emergence and spread of AMR. However, the extent of the role of non-antibiotic antimicrobials and other food-related stresses as selective factors is still in need of clarification. This review addresses the use of non-antibiotic stressors, such as antimicrobials, food-processing treatments, or even novel approaches to ensure food safety, as potential drivers for resistance to clinically relevant antibiotics. The co-selection and cross-adaptation events are covered, which may induce a decreased susceptibility of foodborne bacteria to antibiotics. Although the available studies address the complexity involved in these phenomena, further studies are needed to help better understand the real risk of using food-chain-related stressors, and possibly to allow the establishment of early warnings of potential resistance mechanisms.


Sign in / Sign up

Export Citation Format

Share Document