scholarly journals Antimicrobials and Food-Related Stresses as Selective Factors for Antibiotic Resistance along the Farm to Fork Continuum

Antibiotics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 671
Author(s):  
Federica Giacometti ◽  
Hesamaddin Shirzad-Aski ◽  
Susana Ferreira

Antimicrobial resistance (AMR) is a global problem and there has been growing concern associated with its widespread along the animal–human–environment interface. The farm-to-fork continuum was highlighted as a possible reservoir of AMR, and a hotspot for the emergence and spread of AMR. However, the extent of the role of non-antibiotic antimicrobials and other food-related stresses as selective factors is still in need of clarification. This review addresses the use of non-antibiotic stressors, such as antimicrobials, food-processing treatments, or even novel approaches to ensure food safety, as potential drivers for resistance to clinically relevant antibiotics. The co-selection and cross-adaptation events are covered, which may induce a decreased susceptibility of foodborne bacteria to antibiotics. Although the available studies address the complexity involved in these phenomena, further studies are needed to help better understand the real risk of using food-chain-related stressors, and possibly to allow the establishment of early warnings of potential resistance mechanisms.

2018 ◽  
Vol 3 (2) ◽  
pp. 1-3
Author(s):  
Sankar P

The prognosis of many diseases in the present circumstances is often dubious or uncertain. The reason for the present - day state is the consequences of reckless role of human mankind towards nature and irresponsible use antibiotics since when the antibiotics were discovered. The health of the human beings and livestock in the near future remains obscure If the same situation prevails. Hence, the decline in the effectiveness of antibiotics warrants the exploration of novel strategies and elements to combat the emerging antimicrobial resistance globally. Bacteriophages are one such alternate for antibiotics which can be commendably used in various fields like therapeutics, bio fe rmentation, food processing etc.


Author(s):  
Natalia Kolesnik-Goldmann ◽  
Elias Bodendoerfer ◽  
Kim Röthlin ◽  
Sebastian Herren ◽  
Frank Imkamp ◽  
...  

Antibiotic resistance poses a major threat to health and incurs high economic costs worldwide. Rapid detection of resistance mechanisms can contribute to improving patient care and preventing the dissemination of antimicrobial resistance.


Author(s):  
Shabir Ahmad Mir ◽  
Manzoor Ahmad Shah

This chapter addresses the potential application of nanotechnology in various areas of the food industry. Nanotechnology is having an impact on several aspects of the food industry, from product development to packaging processes. Nanotechnology is capable of solving the very complex set of engineering and scientific challenges in the food processing industries. This chapter focuses on exploring the role of nanotechnology in enhancing food stability at the various stages of processing. Research has highlighted the prospective role of nanotechnology use in the food sector, including nanoencapsulation, nanopackaging, nanoemulsions, nanonutraceuticals, and nanoadditives. Industries are developing nanomaterials that will make a difference not only in the taste of food but also in food safety and the health benefits that food delivers. While proposed applications of nanotechnologies are wide and varied, developments are met with some caution as progress may be stifled by lack of governance and potential risks.


2017 ◽  
pp. 1165-1181
Author(s):  
Shabir Ahmad Mir ◽  
Manzoor Ahmad Shah

This chapter addresses the potential application of nanotechnology in various areas of the food industry. Nanotechnology is having an impact on several aspects of the food industry, from product development to packaging processes. Nanotechnology is capable of solving the very complex set of engineering and scientific challenges in the food processing industries. This chapter focuses on exploring the role of nanotechnology in enhancing food stability at the various stages of processing. Research has highlighted the prospective role of nanotechnology use in the food sector, including nanoencapsulation, nanopackaging, nanoemulsions, nanonutraceuticals, and nanoadditives. Industries are developing nanomaterials that will make a difference not only in the taste of food but also in food safety and the health benefits that food delivers. While proposed applications of nanotechnologies are wide and varied, developments are met with some caution as progress may be stifled by lack of governance and potential risks.


Author(s):  
Ailing Guo ◽  
Qun Li ◽  
Ling Liu ◽  
Xinshuai Zhang ◽  
Wukang Liu ◽  
...  

In food processing environments, various microorganisms can adhere and aggregate on the surface of equipment, resulting in the formation of multi-species biofilms. Complex interactions among microorganisms may affect the formation of multi-species biofilms and their resistance to disinfectants, which are food safety and quality concerns. This paper reviews the various interactions among microorganisms in multi-species biofilms, including competitive, cooperative and neutral interactions. Then, the preliminary mechanisms underlying the formation of multi-species biofilms are discussed in relation to factors, such as quorum sensing (QS) signal molecules, extracellular polymeric substances (EPS) and biofilm-regulated genes. Finally, the resistance mechanisms of common contaminating microorganisms to disinfectants in food processing environments are also summarized. This review is expected to facilitate a better understanding of inter-species interactions, and provide some implications for the control of multi-species biofilms in food processing.


2020 ◽  
Author(s):  
Mojisola C. Hosu ◽  
Sandeep D. Vasaikar ◽  
Grace E. Okuthe ◽  
teke apalata

Abstract Background: Pseudomonas aeruginosa is a common pathogen causing healthcare-associated infections most especially in critically ill and immunocompromised patients. This pathogen poses a public health threat due to its innate resistance to many antimicrobial agents and its ability to acquire new resistance mechanisms under pressure. Infections with Extended spectrum β-lactamases (ESBL)‑producing isolates result into outbreaks that lead to serious antibiotic management concerns with higher mortality and morbidity and significant economic causatives. In this study, we evaluated the antimicrobial resistance patterns and characterized genetically the ESBLs and Metallo- β-lactamases (MBL) produced by this pathogen. Methods: Isolates of P. aeruginosa cultured from patients who attended Nelson Mandela Academic Hospital and other clinics in the four district municipalities of the Eastern Cape between August 2017 and May 2019 were identified; and their antibiotic resistance patterns were tested against amikacin, aztreonam, cefepime, ceftazidime, ciprofloxacin, doripenem, gentamicin, imipenem, levofloxacin, meropenem, piperacillin, piperacillin/tazobactam and tobramycin using the bioMérieux VITEK® 2 and confirmed by Beckman autoSCAN-4 System. Real-time PCR was done using Roche Light Cycler 2.0 to detect the presence of ESBLs; blaSHV, blaTEM and blaCTX-M genes; and MBLs; blaIMP, blaVIM. Results: High antibiotic resistance in decreasing order was observed in piperacillin (64.2%), aztreonam (57.8%), cefepime (51.5%), ceftazidime (51.0%), piperacillin/tazobactam (50.5%), and imipenem (46.6%). A total of 75 (36.8%) multidrug resistant (MDR) isolates were observed of the total pool of isolates. The blaTEM, blaSHV and blaCTX-M was detected in 79.3%, 69.5% and 31.7% isolates (n=82), respectively. The blaIMP was detected in 1.25% while no blaVIM was detected in any of the isolates tested. Conclusions: The study showed a high rate of MDR P. aeruginosa in our setting. The vast majority of these resistant isolates carried blaTEM and blaSHV genes. Continuous monitoring of antimicrobial resistance and strict compliance towards infection prevention and control practices are the best defence against spread of MDR P. aeruginosa.


2020 ◽  
Vol 30 (Supplement_5) ◽  
Author(s):  
S Bonetta ◽  
C Pignata ◽  
S a Bonetta ◽  
E Gasparro ◽  
E Lorenzi ◽  
...  

Abstract The global action plan on antimicrobial resistance reports the necessity to develop standards and guidance for the presence of antimicrobial agents in the environment, especially in wastewater, highlighting its possible role in the antibiotic resistance spreading. In addition, the New European One Health Action Plan against Antimicrobial Resistance underlines the need to support research into knowledge gaps on the release of resistant microorganisms into the environment and their dissemination. The aim of this study was to evaluate the presence of Antibiotic Resistance Bacteria (ARB) and Antibiotic Resistance Genes (ARG) in wastewater treatment plants (WWTPs). At this scope, untreated sewage and treated effluents of three different WWTPs (A, B and C) were sampled for one year. Sample dilutions were plated on R2Agar added/not-added with 4 different antibiotics (ampicillin 32mg/L; tetracycline 16 mg/L; chloramphenicol 32 mg/L; sulfamethoxazole 50,4 mg/L) to evaluate the percentage of antibiotic resistant bacteria and their WWTPs removal rate (%). DNA extraction on the filter used to concentrate the wastewater samples was performed to reveal the ARG presence; subsequently specific PCRs for ARG (blaTEM, tetA, sul II, sul III) were carried out. ARB were detected in all samples analysed. The highest antibiotic resistance percentage was revealed in the sewage (mean 21,7%±4,8) and effluent (mean 21,1%±3,0) of the three wastewater treatment plants for sulfamethoxazole. Moreover, sul II was the most present gene in the samples (81% of all samples, 89 % of sewages and 72% of effluents). The lower WWTPs removal was recovered in the plant B for the tetracycline (95, 7%). The results obtained underlines the need to monitor WWTP as critical hot spot for the antibiotic resistance spreading also considering the One Health approach. Furthermore, the results obtained could suggest interventions to reduce the spread of the antibiotic resistance in the integrated urban water cycle. Key messages The information obtained could provide usefulness information about the role of wastewater treatment plant in the antibiotic resistance spreading. The results could contribute to suggest the interventions targeted to reduce the antibiotic resistance phenomenon in the integrated urban water cycle.


Pathogens ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 398
Author(s):  
Paola Modesto ◽  
Chiara Grazia De Ciucis ◽  
Walter Vencia ◽  
Maria Concetta Pugliano ◽  
Walter Mignone ◽  
...  

Yersinia enterocolitica (Ye) is a very important zoonosis andwild boars play a pivotal role in its transmission. In the last decade, the wild boar population has undergone a strong increase that haspushed them towards urbanized areas, facilitating the human–wildlife interface and the spread of infectious diseases from wildlife to domestic animals and humans. Therefore, it is important to know the serotype, antimicrobial resistance and presence of pathogenicity genes of Yersinia enterocolitica (Ye) isolated in species. From 2013 to 2018, we analyzed the liver of 4890 wild boars hunted in Liguria region; we isolated and serotyped 126 Ye positive samples. A decisive role in the pathogenicity is given by the presence of virulence genes; in Ye isolated we found ystB (~70%), ymoA (45.2%), ail (43.6%) and ystA (~20%). Moreover, we evaluated the susceptibility at various antimicrobic agents (Ampicillin, Chloramphenicol, Enrofloxacin, Gentamicin, Kanamycin, Trimethoprim–Sulfamethoxazole, Sulfisoxazole, Ceftiofur and Tetracycline). The antibiotic resistance was analyzed, and we found a time-dependent increase. It is important to shed light on the role of the wild boars as a reserve of potentially dangerous diseases for humans, and also on the antibiotic resistance that represents a public health problem.


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1251
Author(s):  
Lide Arana ◽  
Lucia Gallego ◽  
Itziar Alkorta

Antimicrobial resistance is one of the biggest threats to global health as current antibiotics are becoming useless against resistant infectious pathogens. Consequently, new antimicrobial strategies are urgently required. Drug delivery systems represent a potential solution to improve current antibiotic properties and reverse resistance mechanisms. Among different drug delivery systems, solid lipid nanoparticles represent a highly interesting option as they offer many advantages for nontoxic targeted drug delivery. Several publications have demonstrated the capacity of SLNs to significantly improve antibiotic characteristics increasing treatment efficiency. In this review article, antibiotic-loaded solid lipid nanoparticle-related works are analyzed to summarize all information associated with applying these new formulations to tackle the antibiotic resistance problem. The main antimicrobial resistance mechanisms and relevant solid lipid nanoparticle characteristics are presented to later discuss the potential of these nanoparticles to improve current antibiotic treatment characteristics and overcome antimicrobial resistance mechanisms. Moreover, solid lipid nanoparticles also offer new possibilities for other antimicrobial agents that cannot be administrated as free drugs. The advantages and disadvantages of these new formulations are also discussed in this review. Finally, given the progress of the studies carried out to date, future directions are discussed.


Sign in / Sign up

Export Citation Format

Share Document