scholarly journals Assimilating best track minimum sea level pressure data together with doppler radar data using an ensemble Kalman filter for Hurricane Ike (2008) at a cloud-resolving resolution

2013 ◽  
Vol 27 (3) ◽  
pp. 379-399 ◽  
Author(s):  
Ming Xue ◽  
Jili Dong
2005 ◽  
Vol 133 (7) ◽  
pp. 1789-1807 ◽  
Author(s):  
Mingjing Tong ◽  
Ming Xue

Abstract A Doppler radar data assimilation system is developed based on an ensemble Kalman filter (EnKF) method and tested with simulated radar data from a supercell storm. As a first implementation, it is assumed that the forward models are perfect and that the radar data are sampled at the analysis grid points. A general purpose nonhydrostatic compressible model is used with the inclusion of complex multiclass ice microphysics. New aspects of this study compared to previous work include the demonstration of the ability of the EnKF method to retrieve multiple microphysical species associated with a multiclass ice microphysics scheme, and to accurately retrieve the wind and thermodynamic variables. Also new are the inclusion of reflectivity observations and the determination of the relative role of the radial velocity and reflectivity data as well as their spatial coverage in recovering the full-flow and cloud fields. In general, the system is able to reestablish the model storm extremely well after a number of assimilation cycles, and best results are obtained when both radial velocity and reflectivity data, including reflectivity information outside of the precipitation regions, are used. Significant positive impact of the reflectivity assimilation is found even though the observation operator involved is nonlinear. The results also show that a compressible model that contains acoustic modes, hence the associated error growth, performs at least as well as an anelastic model used in previous EnKF studies at the cloud scale. Flow-dependent and dynamically consistent background error covariances estimated from the forecast ensemble play a critical role in successful assimilation and retrieval. When the assimilation cycles start from random initial perturbations, better results are obtained when the updating of the fields that are not directly related to radar reflectivity is withheld during the first few cycles. In fact, during the first few cycles, the updating of the variables indirectly related to reflectivity hurts the analysis. This is so because the estimated background covariances are unreliable at this stage of the data assimilation process, which is related to the way the forecast ensemble is initialized. Forecasts of supercell storms starting from the best-assimilated initial conditions are shown to remain very good for at least 2 h.


2015 ◽  
Vol 30 (4) ◽  
pp. 1050-1063 ◽  
Author(s):  
Masaru Kunii

Abstract Improving tropical cyclone (TC) forecasts is one of the most important issues in meteorology, but TC intensity forecasting is a challenging task. Because the lack of observations near TCs usually results in degraded accuracy of the initial fields, utilizing TC advisory data in data assimilation typically has started with an ensemble Kalman filter (EnKF). In this study, TC minimum sea level pressure (MSLP) and position information were directly assimilated using the EnKF, and the impacts of these observations were investigated by comparing different assimilation strategies. Another experiment with TC wind radius data was carried out to examine the influence of TC shape parameters. Sensitivity experiments indicated that the direct assimilation of TC MSLP and position data yielded results that were superior to those based on conventional assimilation of TC MSLP as a standard surface pressure observation. Assimilation of TC radius data modified the outer circulation of TCs closer to observations. The impacts of these TC parameters were also evaluated by using the case of Typhoon Talas in 2011. The TC MSLP, position, and wind radius data led to improved TC track forecasts and therefore to improved precipitation forecasts. These results imply that initialization with these TC-related observations benefits TC forecasting, offering promise for the prevention and mitigation of natural disasters caused by TCs.


Sign in / Sign up

Export Citation Format

Share Document