minimum sea level pressure
Recently Published Documents


TOTAL DOCUMENTS

13
(FIVE YEARS 3)

H-INDEX

7
(FIVE YEARS 0)

2021 ◽  
Vol 56 ◽  
pp. 77-87
Author(s):  
Marc Imberger ◽  
Xiaoli Guo Larsén ◽  
Neil Davis

Abstract. With the rising share of renewable energy sources like wind energy in the energy mix, high-impact weather events like mid-latitude storms increasingly affect energy production, grid stability and safety and reliable forecasting becomes very relevant for e.g. transmission system operators to allow for actions to reduce imbalances. Traditionally, meteorological forecasts are provided by limited-area weather prediction models (LAMs), which can use high enough model resolution to represent the range of atmospheric scales of motions associated with such storm structures. While generally satisfactory, deterioration and insufficient deepening of large-scale storm structures are observed when they are introduced near the lateral boundaries of the LAM due to inadequate spatial and temporal interpolation. Global models with regional mesh refinement capabilities like the Model for Prediction Across Scales (MPAS) have the potential to provide an alternative, while avoiding sharp resolution jumps and lateral boundaries. In this study, MPAS' capabilities of simulating key evaluation metrics like storm intensity, storm location and storm duration are investigated based on a case study and assessed in comparison with buoy measurements, forecast products from the Climate Forecast System (CFSv2) and simulations with the Weather Research and Forecasting (WRF) LAM. Quasi-uniform and variable-resolution MPAS mesh configurations with different model physics settings are designed to analyze the impact of the mesh refinement and model physics on the model performance. MPAS shows good performance in predicting storm intensity based on the local minimum sea level pressure, while time of local minimum sea level pressure (storm duration) was generally estimated too late (too long) in comparison with the buoy measurements in part due to an early west-wards shift of the storm center in MPAS. The variable-resolution configurations showed a combination of an additional south-westwards shift and deviations in the sea level pressure field south-west of the storm center that introduced additional bias to the time of local minimum sea level pressure at some locations. The study highlights the need for a more detailed analysis of applied mesh refinements for particular applications and emphasizes the importance of methods like data assimilation techniques to prevent model drifts.


Author(s):  
Michael J. Mueller ◽  
Bachir Annane ◽  
S. Mark Leidner ◽  
Lidia Cucurull

AbstractAn observing system experiment (OSE) was conducted to assess the impact of wind products derived from the Cyclone Global Navigation Satellite System (CYGNSS) on tropical cyclone (TC) track, maximum 10-m wind speed (Vmax), and minimum sea level pressure forecasts. The experiment used a global data assimilation and forecast system and the impact of both CYGNSS-derived scalar and vector wind retrievals was investigated. The CYGNSS-derived vector wind products were generated by optimally combining the scalar winds and a gridded a priori vector field. Additional tests investigated the impact of CYGNSS data on a regional model through the impact of lateral boundary and initial conditions from the global model during the developmental phase of Hurricane Michael (2018).In the global model, statistically significant track forecast improvements of 20-40 km were found in the first 60 h. Vmax forecasts showed some significant degradations of ~2 kts at a few lead times, especially in the first 24 h. At most lead times, impacts were not statistically significant. Degradations in Vmax for Hurricane Michael in the global model were largely attributable to a failure of the CYGNSS-derived scalar wind test to produce rapid intensification in the forecast failure of the CYGNSS-derived scalar wind test to produce rapid intensification in the forecast symmetrical compared to the control and CYGNSS-derived vector wind test. The regional model used initial and lateral boundary conditions from the global control and CYGNSS scalar wind tests. The regional forecasts showed large improvements in track, Vmax, and minimum sea level pressure.


2021 ◽  
Author(s):  
Ségolène Berthou ◽  
Elizabeth Kendon ◽  
Malcolm Roberts ◽  
Benoît Vannière ◽  
Danijel Belušic ◽  
...  

<p>Met Office convection-permitting 2.2km simulations over a European domain show 10-20% larger increases in winter mean precipitation at the end of the century compared to their 25km convection-parameterised driving model. We identify individual storms with a maximum vorticity tracking algorithm and look at storm characteristics at their time of deepest minimum sea level pressure. We show that the thermodynamical characteristics of future winter storms are getting closer to present-day autumn storms, with future winter storms showing larger values of convective available potential energy and convective inhibition and more intense rainfall in their warm sector. This suggests that embedded convection in the warm conveyor belt is a good candidate to explain the larger future intensification of rainfall per storm in the 2.2km model compared to the convection-parameterised model. Multi-model analysis is underway to identify whether these conclusions hold in other convection-permitting models.</p>


2015 ◽  
Vol 30 (4) ◽  
pp. 1050-1063 ◽  
Author(s):  
Masaru Kunii

Abstract Improving tropical cyclone (TC) forecasts is one of the most important issues in meteorology, but TC intensity forecasting is a challenging task. Because the lack of observations near TCs usually results in degraded accuracy of the initial fields, utilizing TC advisory data in data assimilation typically has started with an ensemble Kalman filter (EnKF). In this study, TC minimum sea level pressure (MSLP) and position information were directly assimilated using the EnKF, and the impacts of these observations were investigated by comparing different assimilation strategies. Another experiment with TC wind radius data was carried out to examine the influence of TC shape parameters. Sensitivity experiments indicated that the direct assimilation of TC MSLP and position data yielded results that were superior to those based on conventional assimilation of TC MSLP as a standard surface pressure observation. Assimilation of TC radius data modified the outer circulation of TCs closer to observations. The impacts of these TC parameters were also evaluated by using the case of Typhoon Talas in 2011. The TC MSLP, position, and wind radius data led to improved TC track forecasts and therefore to improved precipitation forecasts. These results imply that initialization with these TC-related observations benefits TC forecasting, offering promise for the prevention and mitigation of natural disasters caused by TCs.


2015 ◽  
Vol 3 (5) ◽  
pp. 3449-3485
Author(s):  
M. Bratu ◽  
C. Nichita

Abstract. This paper is devoted to the study of the synoptic-dynamical conditions that contributed to the development of a rare explosive cyclogenesis event that occurred at the beginning of the winter from 2012 to 2013 in south-eastern Romania, more precisely between 2 and 3 December 2012. The minimum sea level pressure observed was 980.2 hPa, the lowest ever observed record for the surface of the Sulina weather station, and also over the western side of the Black Sea during the of period 1961–2000 and 1965–2004. It was found that the cyclone was not a regular one, but a real "meteorological bomb" one, where the central pressure at sea level recorded an extraordinary decrease at about 32.3 hPa in 24 h, equivalent with 1.7 B (Bergeron unit). Compared to the 20th century storms named Lothar and Martin (level 2 and 1 on the hurricane scale) which devastated western and central Europe in December 1999, this case of explosive cyclogenesis can be considered one of the most extreme for our area, from both a meteorological view as well as its effects.


2011 ◽  
Vol 26 (6) ◽  
pp. 1085-1091 ◽  
Author(s):  
Daryl T. Kleist

Abstract The assimilation of official advisory minimum sea level pressure observations has been developed and tested in the National Centers for Environmental Prediction (NCEP) Global Data Assimilation System (GDAS) to address forecaster concerns regarding some tropical systems being far too weak in operational Global Forecast System (GFS) analyses. The assimilation of these observations has been operational in the GFS since December 2009. Using the T574 version of the NCEP GFS model, it is demonstrated that the assimilation of these observations results in a substantial reduction in the initial intensity bias for tropical systems, resulting in improved track and intensity guidance for lead times out to 5 days.


2007 ◽  
Vol 22 (1) ◽  
pp. 71-88 ◽  
Author(s):  
John A. Knaff ◽  
Raymond M. Zehr

Abstract Tropical cyclone wind–pressure relationships are reexamined using 15 yr of minimum sea level pressure estimates, numerical analysis fields, and best-track intensities. Minimum sea level pressure is estimated from aircraft reconnaissance or measured from dropwindsondes, and maximum wind speeds are interpolated from best-track maximum 1-min wind speed estimates. The aircraft data were collected primarily in the Atlantic but also include eastern and central North Pacific cases. Global numerical analyses were used to estimate tropical cyclone size and environmental pressure associated with each observation. Using this dataset (3801 points), the influences of latitude, tropical cyclone size, environmental pressure, and intensification trend on the tropical cyclone wind–pressure relationships were examined. Findings suggest that latitude, size, and environmental pressure, which all can be quantified in an operational and postanalysis setting, are related to predictable changes in the wind–pressure relationships. These factors can be combined into equations that estimate winds given pressure and estimate pressure given winds with greater accuracy than current methodologies. In independent testing during the 2005 hurricane season (524 cases), these new wind–pressure relationships resulted in mean absolute errors of 5.3 hPa and 6.2 kt compared with the 7.7 hPa and 9.0 kt that resulted from using the standard Atlantic Dvorak wind–pressure relationship. These new wind–pressure relationships are then used to evaluate several operational wind–pressure relationships. These intercomparisons have led to several recommendations for operational tropical cyclone centers and those interested in reanalyzing past tropical cyclone events.


Sign in / Sign up

Export Citation Format

Share Document