A numerical study of the evolution of a mesoscale convective vortex on the Meiyu front

2013 ◽  
Vol 27 (6) ◽  
pp. 889-909 ◽  
Author(s):  
Jinxin Wang ◽  
Yinong Pan ◽  
Shicheng Wang
2003 ◽  
Vol 131 (6) ◽  
pp. 1150-1170 ◽  
Author(s):  
Qing-Hong Zhang ◽  
Kai-Hon Lau ◽  
Ying-Hwa Kuo ◽  
Shou-Jun Chen

2007 ◽  
Vol 64 (5) ◽  
pp. 1443-1466 ◽  
Author(s):  
Robert J. Conzemius ◽  
Richard W. Moore ◽  
Michael T. Montgomery ◽  
Christopher A. Davis

Abstract Idealized simulations of a diabatic Rossby vortex (DRV) in an initially moist neutral baroclinic environment are performed using the fifth-generation National Center for Atmospheric Research–Pennsylvania State University (NCAR–PSU) Mesoscale Model (MM5). The primary objective is to test the hypothesis that the formation and maintenance of midlatitude warm-season mesoscale convective vortices (MCVs) are largely influenced by balanced flow dynamics associated with a vortex that interacts with weak vertical shear. As a part of this objective, the simulated DRV is placed within the context of the Bow Echo and Mesoscale Convective Vortex Experiment (BAMEX) field campaign by comparing its tangential velocity, radius of maximum winds, CAPE, and shear with the MCVs observed in BAMEX. The simulations reveal two distinct scales of development. At the larger scale, the most rapidly growing moist baroclinic mode is excited, and exponential growth of this mode occurs during the simulation. Embedded within the large-scale baroclinic wave is a convective system exhibiting the characteristic DRV development, with a positive potential vorticity (PV) anomaly in the lower troposphere and a negative PV anomaly in the upper troposphere, and the positive/negative PV doublet tilted downshear with height. The DRV warm-air advection mechanism is active, and the resulting deep convection helps to reinforce the DRV against the deleterious effects of environmental shear, causing an eastward motion of the convective system as a whole. The initial comparisons between the simulated DRVs and the BAMEX MCVs show that the simulated DRVs grew within background conditions of CAPE and shear similar to those observed for BAMEX MCVs and suggest that the same dynamical mechanisms are active. Because the BAMEX field campaign sampled MCVs in different backgrounds of CAPE and shear, the comparison also demonstrates the need to perform additional simulations to explore these different CAPE and shear regimes and to understand their impacts on the intensity and longevity of MCVs. Such a study has the additional benefit of placing MCV dynamics in an appropriate context for exploring their relevance to tropical cyclone formation.


2006 ◽  
Vol 21 (3) ◽  
pp. 408-415 ◽  
Author(s):  
Robert J. Trapp ◽  
Dustan M. Wheatley ◽  
Nolan T. Atkins ◽  
Ronald W. Przybylinski ◽  
Ray Wolf

Abstract Postevent damage surveys conducted during the Bow Echo and Mesoscale Convective Vortex Experiment demonstrate that the severe thunderstorm wind reports in Storm Data served as a poor characterization of the actual scope and magnitude of the surveyed damage. Contrasting examples are presented in which a few reports grossly underrepresented a significant event (in terms of property damage and actual areal coverage of damage), while a large number of reports overrepresented a relatively less significant event. Explanations and further discussion of this problem are provided, as are some of the implications, which may include a skewed understanding of how and when systems of thunderstorms cause damage. A number of recommendations pertaining to severe wind reporting are offered.


2011 ◽  
Vol 139 (8) ◽  
pp. 2367-2385 ◽  
Author(s):  
Hsiao-Wei Lai ◽  
Christopher A. Davis ◽  
Ben Jong-Dao Jou

AbstractThis study examines a subtropical oceanic mesoscale convective vortex (MCV) that occurred from 1800 UTC 4 June to 1200 UTC 6 June 2008 during intensive observing period (IOP) 6 of the Southwest Monsoon Experiment (SoWMEX) and the Terrain-influenced Monsoon Rainfall Experiment (TiMREX). A dissipating mesoscale convective system reorganized within a nearly barotropic vorticity strip, which formed as a southwesterly low-level jet developed to the south of subsiding easterly flow over the southern Taiwan Strait. A cyclonic circulation was revealed on the northern edge of the mesoscale rainband with a horizontal scale of 200 km. An inner subvortex, on a scale of 25–30 km with maximum shear vorticity of 3 × 10−3 s−1, was embedded in the stronger convection. The vortex-relative southerly flow helped create local potential instability favorable for downshear convection enhancement. Strong low-level convergence suggests that stretching occurred within the MCV. Higher θe air, associated with significant potential and conditional instability, and high reflectivity signatures near the vortex center suggest that deep moist convection was responsible for the vortex stretching. Dry rear inflow penetrated into the MCV and suppressed convection in the upshear direction. A mesolow was also roughly observed within the larger vortex. The presence of intense vertical wind shear in the higher troposphere limited the vortex vertical extent to about 6 km.


2016 ◽  
Vol 16 (18) ◽  
pp. 12359-12382 ◽  
Author(s):  
Chung-Chieh Wang ◽  
Bing-Kui Chiou ◽  
George Tai-Jen Chen ◽  
Hung-Chi Kuo ◽  
Ching-Hwang Liu

Abstract. During 11–12 June 2012, quasistationary linear mesoscale convective systems (MCSs) developed near northern Taiwan and produced extreme rainfall up to 510 mm and severe flooding in Taipei. In the midst of background forcing of low-level convergence, the back-building (BB) process in these MCSs contributed to the extreme rainfall and thus is investigated using a cloud-resolving model in the case study here. Specifically, as the cold pool mechanism is not responsible for the triggering of new BB cells in this subtropical event during the meiyu season, we seek answers to the question why the location about 15–30 km upstream from the old cell is still often more favorable for new cell initiation than other places in the MCS. With a horizontal grid size of 1.5 km, the linear MCS and the BB process in this case are successfully reproduced, and the latter is found to be influenced more by the thermodynamic and less by dynamic effects based on a detailed analysis of convective-scale pressure perturbations. During initiation in a background with convective instability and near-surface convergence, new cells are associated with positive (negative) buoyancy below (above) due to latent heating (adiabatic cooling), which represents a gradual destabilization. At the beginning, the new development is close to the old convection, which provides stronger warming below and additional cooling at mid-levels from evaporation of condensates in the downdraft at the rear flank, thus yielding a more rapid destabilization. This enhanced upward decrease in buoyancy at low levels eventually creates an upward perturbation pressure gradient force to drive further development along with the positive buoyancy itself. After the new cell has gained sufficient strength, the old cell's rear-flank downdraft also acts to separate the new cell to about 20 km upstream. Therefore, the advantages of the location in the BB process can be explained even without the lifting at the leading edge of the cold outflow.


2003 ◽  
Vol 131 (8) ◽  
pp. 1939-1943
Author(s):  
David M. Brommer ◽  
Robert C. Balling ◽  
Randall S. Cerveny

Abstract In approximately half of Arizona's summer season (June–September) mesoscale convective systems evolve into mesoscale convective vortices (MCVs). Analysis of satellite imagery identified MCVs in Arizona over the period 1991–2000, and local and regional rawinsonde data discriminated conditions conducive for MCV development. These results indicate that MCVs are more likely to form from convective systems when the local and regional environments are characterized by relative stability in the 850–700-hPa layer and moderate wind shear in the 500–200-hPa layer. These characteristics are similar to results reported for MCV development in the central United States.


Sign in / Sign up

Export Citation Format

Share Document