pressure gradient force
Recently Published Documents


TOTAL DOCUMENTS

157
(FIVE YEARS 32)

H-INDEX

26
(FIVE YEARS 3)

Author(s):  
Joshua G. Gebauer ◽  
David B. Parsons

Abstract An analytical model is presented for the generation of a Blackadar-like nocturnal low-level jet in a broad baroclinic zone. The flow is forced from below (flat ground) by a surface buoyancy gradient and from above (free atmosphere) by a constant pressure gradient force. Diurnally-varying mixing coefficients are specified to increase abruptly at sunrise and decrease abruptly at sunset. With attention restricted to a surface buoyancy that varies linearly with a horizontal coordinate, the Boussinesq-approximated equations of motion, thermal energy, and mass conservation reduce to a system of one-dimensional equations that can be solved analytically. Sensitivity tests with southerly jets suggest that (i) stronger jets are associated with larger decreases of the eddy viscosity at sunset (as in Blackadar theory), (ii) the nighttime surface buoyancy gradient has little impact on jet strength, and (iii) for pure baroclinic forcing (no free-atmosphere geostrophic wind), the nighttime eddy diffusivity has little impact on jet strength, but the daytime eddy diffusivity is very important and has a larger impact than the daytime eddy viscosity. The model was applied to a jet that developed in fair weather conditions over the Great Plains from southern Texas to northern South Dakota on 1 May 2020. The ECMWF Reanalysis v5 (ERA5) for the afternoon prior to jet formation showed that a broad north-south-oriented baroclinic zone covered much of the region. The peak model-predicted winds were in good agreement with ERA5 winds and lidar data from the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) central facility in north-central Oklahoma.


2021 ◽  
Vol 945 (1) ◽  
pp. 012028
Author(s):  
Yusuke Uchiyama ◽  
Xu Zhang ◽  
Shota Yanase

Abstract This study investigates the generation mechanism and influence of the whirlpools in the Naruto Strait on the surrounding marine environment using state-of-the-art high-resolution numerical ocean circulation modeling in a quadruple nested configuration. The Naruto whirlpools is recognized as an extraordinary seascape that the local governments and the citizens seek to register as a world natural heritage site. We found that the pronounced pressure gradient force associated with the meridional surface elevation difference was induced by a phase difference of two bifurcating major tidal waves. These waves originate from the Kitan Strait, and ultimately produce intense tidal currents at the Naruto Strait. One branch of the tidal waves propagates counter-clockwise along Awaji Island through the Akashi Strait, while the other occurs directly from the Kii Channel. As such, the whirlpool emerges as a large number of sub-mesoscale eddies, primarily due to the horizontal shear instability of tidal currents energized at the narrow topography between two headlands that extend into the strait. A dipole of overturning vertical circulations appears underneath the whirlpools with convergent downward transport at the strongest tidal current near the center of the strait; this causes efficient vertical mixing. This three-dimensional non-linear mixing promotes a time-averaged southeastward mass transport that extracts water and materials from the Harima-nada Sea into the Kii Channel.


2021 ◽  
pp. 1-48
Author(s):  
Marie C. McGraw ◽  
James G. Larson

Abstract The latitudinal location of the east Pacific Ocean intertropical convergence zone (ITCZ) changes on time scales of days to weeks during boreal spring. This study focuses on tropical near-surface dynamics in the days leading up to the two most frequent types of ITCZ events, nITCZ (Northern Hemisphere) and dITCZ (double). There is a rapid, daily evolution of dynamical features on top of a slower, weekly evolution that occurs leading up to and after nITCZ and dITCZ events. Zonally-elongated bands of anomalous cross-equatorial flow and off-equatorial convergence rapidly intensify and peak one day before or the day of these ITCZ events, followed one or two days later by a peak in near-equatorial zonal wind anomalies. In addition, there is a wide region north of the southeast Pacific subtropical high where anomalous northwesterlies strengthen prior to nITCZ events and southeasterlies strengthen before dITCZ events. Anomalous zonal and meridional near-surface momentum budgets reveal that the terms associated with Ekman balance are of first-order importance preceding nITCZ events, but that the meridional momentum advective terms are just as important before dITCZ events. Variations in cross-equatorial flow are promoted by the meridional pressure gradient force (PGF) prior to nITCZ events and the meridional advection of meridional momentum in addition to the meridional PGF before dITCZ events. Meanwhile, variations in near-equatorial easterlies are driven by the zonal PGF and the Coriolis force preceding nITCZ events and the zonal PGF, the Coriolis force, and the meridional advection of zonal momentum before dITCZ events.


2021 ◽  
Author(s):  
Yueyue Yu ◽  
Rongcai Ren ◽  
Xin Xia ◽  
Ruxue Liang ◽  
Jian Rao

Abstract The topographic dynamical effect from Eurasia (EA_Topo) and North America (NA_Topo) on the winter isentropic meridional mass circulation (IMMC) is investigated using the WACCM. The independent effect of EA_Topo and that of NA_Topo, with the former much stronger, are both to strengthen the IMMC that is composed of the lower equatorward cold air branch (CB) and the upper poleward warm air branch in the extratropical tropopshere (WB_TR) and stratosphere (WB_ST). Further investigation of the individual contributions from changes in stationary vs. transient and zonal-mean flow vs. waves reveals that, due to the topography-forced mass redistribution, changes in the low-level meridional pressure gradient force a zonal-mean counter-clockwise/ clockwise meridional cell in the southern/northern side of topography. This weakens/strengthens the IMMC south/north of 30°N from the troposphere to lower stratosphere, acting as a dominant contributor to the IMMC changes south of 50°N. Meanwhile, the EA/NA_Topo-forced amplification of stationary waves constructively interacts with those determined by land-sea contrast, making the dominant/minor contributions to the strengthening of CB and WB_TR north of 50°N. The related increase in the upward wave propagation further dominates the WB_ST strengthening in the subpolar region. Meanwhile, transient eddy activities are depressed by EA/NA_Topo along with the weakened background westerly, which partly-offset/dominate-over the contribution from stationary flow in midlatitudes and subpolar region. The coexistence of the other topography (NA/EA_Topo) yields destructive mutual interferrence, which can weaken/offset the independent-EA/NA_Topo-forced meridional mass transport mainly via changing the zonal-mean as well as the downstream wave pattern of mass and meridional wind.


2021 ◽  
Author(s):  
Rui Zhang ◽  
Bo Hong ◽  
Lei Zhu ◽  
Wenping Gong ◽  
Heng Zhang

Abstract. The Huangmaohai Estuary (HE) is a funnel-shaped microtidal estuary in the west of the Pearl River Delta (PRD) in southern China. Since China's reform and opening up in 1978, extensive human activities have occurred and greatly changed the estuary's topography, and modified its hydrodynamics. In this study, we examined the morphological evolution by analyzing remote sensing data with ArcGIS tools and studied the responses of hydrodynamics to the changes in topography from 1977 to 2010 by using the Delft3d model. We took the changes in estuarine circulation during neap tides in dry seasons as an example. The results show that human reclamation caused a narrowing of the estuary, and channel dredging deepened the estuary. These human activities changed both the longitudinal and lateral estuarine circulations. The longitudinal circulation was observed to increase with the deepening and narrowing of the estuary. The lateral circulation experienced changes in both the magnitude and pattern. The momentum balance analysis shows that when the depth and width changed simultaneously, the longitudinal estuarine circulation was modulated by both the channel deepening and width reduction, in which the friction, pressure gradient force, and advection terms were altered. The analysis of the longitudinal vortex dynamics indicates that the changes in the vertical shear of the longitudinal flow, lateral salinity gradient, and vertical mixing were responsible for the change in the lateral circulation. The changes in water depth are the dominant factor affecting lateral circulation intensity. This study has implications for sediment transport and morphological evolution in estuaries heavily impacted by human interventions.


Author(s):  
Fengguo Tian ◽  
Shulei Liu ◽  
Zifeng Zhao ◽  
Ming Lei

Abstract By CFD-DEM simulations, the present work is aimed to investigate the transient gas-solid bubbling mechanisms along a whole bubble lifecycle in a 2D fluidized bed from a micro perspective. Systemic comparisons with CCD measurements confirm the validity of current simulations. Afterward, the manner of particle motion and its driving mechanisms at various stages are investigated. In order to do that, external forces are analyzed at an individual particle level, including the drag, pressure gradient force, and their resultant acceleration together with gravity. Many interesting findings have been achieved. For example, a switch in directions of drag and pressure gradient forces at the root of an initial bubble enables its detachment. And, regarding their contributions to the burst of a bubble, the drag force is several times of the pressure gradient forces. Present efforts help to offer a novel view of particle dynamics during the bubbling fluidization.


Separations ◽  
2021 ◽  
Vol 8 (8) ◽  
pp. 121
Author(s):  
Lanyue Jiang ◽  
Peikun Liu ◽  
Yuekan Zhang ◽  
Xinghua Yang ◽  
Xiaoyu Li ◽  
...  

To investigate the multiphase flow characteristics and improve the classification mechanism of a W-shaped hydrocyclone, this paper adopts the numerical simulation method to evaluate the effects of the particle size and density on the separation characteristics and motion behavior of particles. Forces, such as the centrifugal inertia force, pressure gradient force and fluid drag force, which control particle motion, are analyzed, and the classification mechanism of W-shaped hydrocyclones is examined in terms of the particle distribution and separation efficiency. The results indicate that the radial centrifugal inertia and pressure gradient forces in W-shaped hydrocyclones are hundreds of times the gravity force, which is the main driver of radial motion. Particle density and size changes greatly impact the movement and distribution of coarse particles, but no notable change occurs in fine particles. With increasing particle density, the cut size decreases, and the fractionation accuracy increases.


2021 ◽  
Author(s):  
Luna Hiron ◽  
David Nolan ◽  
Lynn Shay

<p>Mesoscale eddies drive a large fraction of the variability in the ocean. Eddies with strong tangential velocity compared to their translation speed are able to stay coherent and travel long distances, carrying water mass properties, heat, nutrients, and particles around the ocean. The nonlinearity of these mesoscale features is greater for stronger flow and greater curvature, which, consequently, is associated with greater centrifugal force.</p><p>The Gulf of Mexico Loop Current (LC) system has long been assumed to be close to geostrophic balance despite its strong flow and the development of large meanders and strong frontal eddies during unstable phases. The region between the LC meanders and its frontal eddies was shown to have high Rossby numbers indicating nonlinearity; however, the effect of the nonlinear term on the flow has not been studied so far. In this study, the ageostrophy of the LC meanders is assessed using a high-resolution numerical model and geostrophic velocities from altimetry. The method used in this study can be applied in any region where the centrifugal force is important. A formula to compute the radius of curvature of the flow from the velocity field is also presented.</p><p>The results indicate that during strong meandering, especially before and during LC shedding and in the presence of frontal eddies, the centrifugal force becomes as important as the Coriolis force and the pressure-gradient force: LC meanders are in gradient-wind balance. The centrifugal force modulates the balance and modifies the flow speed, resulting in a subgeostrophic flow in the LC meander trough around the frontal eddies and supergeostrophic flow in the LC meander crest. The same pattern is found when correcting the geostrophic velocities from altimetry to account for the centrifugal force. The ageostrophic percentage in the cyclonic and anticyclonic meanders is 47% ± 1% and 78% ± 8% in the model and 31% ± 3% and 78% ± 29% in the altimetry dataset, respectively. Thus, the ageostrophic velocity is an important component of the LC flow and cannot be neglected when studying the LC system.</p><p> </p><p> </p><p> </p>


2021 ◽  
Author(s):  
Natalja Rakowsky ◽  
Thierry Goubier ◽  
Sven Harig

<p>Based on the shallow water equations,the tsunami wave propagation in the deep ocean and an assessment of the wave height at the coast can easily be simulated online during an event. To simulate the estimated inundation, however, poses higher demands on model physics and mesh resolution. Whereas in the deep ocean, a simple balance between pressure gradient force and acceleration is sufficient for first estimates of the wave propagation, additional nonlinear factors like bottom friction and momentum advection gain importance close to the coast. For a seamless simulation of the transition from wave propagation to inundation, the finite element model TsunAWI has been developed as part of the efforts within the GITEWS project (German Indonesian Tsunami Early Warning System) and in the meantime, the code has evolved considerably with applications in several projects. The triangular mesh approach allows for large freedom in the resolution of coastline and bathymetric features, however is also numerically demanding. In the ongoing EU-project LEXIS (Large-scale Execution for Industry & Society), the simulation of earthquake and tsunami events is one of the pilot study cases and on the tsunami side puts focus on the optimization of TsunAWI on modern HPC architectures. Targeting FPGAs, an accelerator for TsunAWI is being designed. It relies on a software-distributed shared memory (S-DSM) allowing sharing of the memory between distributed nodes and the accelerator(s), and is showing that TsunAWI optimisations, namely single precision and unstructured mesh traversal, are key elements to reach high performance and efficiency. For HPC systems, an MPI parallelization was implemented, based on domain decomposition. The MPI parallel code shows good scaling, making high resolution simulations feasible during an event. The developments are evaluated in simulations of tsunami inundation in hypothetical and real events in Indonesia and Chile. It turns out that the optimized approach allows for improved fast estimates of the tsunami impact in the application cases.</p>


Sign in / Sign up

Export Citation Format

Share Document