Dehydrogenation and Hydrogenation Cycle of Methylcyclohexane–Toluene System for Liquid Phase Hydrogen Storage: Thermodynamic Reaction Equilibrium Investigation

Author(s):  
Opeyemi A. Ojelade ◽  
Sharif F. Zaman
Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1722
Author(s):  
Troy Semelsberger ◽  
Jason Graetz ◽  
Andrew Sutton ◽  
Ewa C. E. Rönnebro

We present the research findings of the DOE-funded Hydrogen Storage Engineering Center of Excellence (HSECoE) related to liquid-phase and slurry-phase chemical hydrogen storage media and their potential as future hydrogen storage media for automotive applications. Chemical hydrogen storage media other than neat liquid compositions will prove difficult to meet the DOE system level targets. Solid- and slurry-phase chemical hydrogen storage media requiring off-board regeneration are impractical and highly unlikely to be implemented for automotive applications because of the formidable task of developing solid- or slurry-phase transport systems that are commercially reliable and economical throughout the entire life cycle of the fuel. Additionally, the regeneration cost and efficiency of chemical hydrogen storage media is currently the single most prohibitive barrier to implementing chemical hydrogen storage media. Ideally, neat liquid-phase chemical hydrogen storage media with net-usable gravimetric hydrogen capacities of greater than 7.8 wt% are projected to meet the 2017 DOE system level gravimetric and volumetric targets. The research presented herein is a collection of research findings that do not in and of themselves warrant a dedicated manuscript. However, the collection of results do, in fact, highlight the engineering challenges and short-comings in scaling up and demonstrating fluid-phase ammonia borane and alane compositions that all future materials researchers working in hydrogen storage should be aware of.


2012 ◽  
Vol 512-515 ◽  
pp. 1438-1441 ◽  
Author(s):  
Hong Min Kan ◽  
Ning Zhang ◽  
Xiao Yang Wang ◽  
Hong Sun

An overview of recent advances in hydrogen storage is presented in this review. The main focus is on metal hydrides, liquid-phase hydrogen storage material, alkaline earth metal NC/polymer composites and lithium borohydride ammoniate. Boron-nitrogen-based liquid-phase hydrogen storage material is a liquid under ambient conditions, air- and moisture-stable, recyclable and releases H2controllably and cleanly. It is not a solid material. It is easy storage and transport. The development of a liquid-phase hydrogen storage material has the potential to take advantage of the existing liquid-based distribution infrastructure. An air-stable composite material that consists of metallic Mg nanocrystals (NCs) in a gas-barrier polymer matrix that enables both the storage of a high density of hydrogen and rapid kinetics (loading in <30 min at 200°C). Moreover, nanostructuring of Mg provides rapid storage kinetics without using expensive heavy-metal catalysts. The Co-catalyzed lithium borohydride ammoniate, Li(NH3)4/3BH4 releases 17.8 wt% of hydrogen in the temperature range of 135 to 250 °C in a closed vessel. This is the maximum amount of dehydrogenation in all reports. These will reduce economy cost of the global transition from fossil fuels to hydrogen energy.


Author(s):  
Shuyang Zhang ◽  
Xiaoxin Wang ◽  
Peiwen Li

On-board hydrogen production via catalytic autothermal reforming is beneficial to vehicles using fuel cells because it eliminates the challenges of hydrogen storage. As the primary fuel for both civilian and military air flight application, Jet-A fuel (after desulfurization) was reformed for making hydrogen-rich fuels in this study using an in-house-made Rh/NiO/K-La-Ce-Al-OX ATR catalyst under various operating conditions. Based on the preliminary thermodynamic analysis of reaction equilibrium, important parameters such as ratios of H2O/C and O2/C were selected, in the range of 1.1–2.5 and 0.5–1.0, respectively. The optimal operating conditions were experimentally obtained at the reactor’s temperature of 696.2 °C, which gave H2O/C = 2.5 and O2/C = 0.5, and the obtained fuel conversion percentage, hydrogen yield (can be large than 1 from definition), and energy efficiency were 88.66%, 143.84%, and 64.74%, respectively. In addition, a discussion of the concentration variation of CO and CO2 at different H2O/C, as well as the analysis of fuel conversion profile, leads to the finding of effective approaches for suppression of coke formation.


2020 ◽  
Vol 26 ◽  
pp. 290-312 ◽  
Author(s):  
Chengguang Lang ◽  
Yi Jia ◽  
Xiangdong Yao

Author(s):  
Ilknur E. Ertas ◽  
Mehmet Yurderi ◽  
Ahmet Bulut ◽  
Mehmet S. Agirtas ◽  
Mehmet Zahmakiran

2013 ◽  
Vol 135 (23) ◽  
pp. 8760-8760 ◽  
Author(s):  
Wei Luo ◽  
Patrick G. Campbell ◽  
Lev N. Zakharov ◽  
Shih-Yuan Liu

1984 ◽  
Vol 9 (5) ◽  
pp. 411-419 ◽  
Author(s):  
G CACCIOLA ◽  
N GIORDANO ◽  
G RESTUCCIA

Sign in / Sign up

Export Citation Format

Share Document