Study on nonlinear buckling behavior of tubing string in HPHT gas wells

Author(s):  
Baocheng Wu ◽  
Qiang Zhang ◽  
Jie Li ◽  
Liangliang Ding ◽  
Jinlong Wang ◽  
...  
2018 ◽  
Vol 22 (6) ◽  
pp. 1910-1930 ◽  
Author(s):  
Tran Minh Tu ◽  
Le Kha Hoa ◽  
Dang Xuan Hung ◽  
Le Thanh Hai

The nonlinear buckling and post-buckling response of imperfect porous plates is investigated analytically in this paper. The porous materials with elastic moduli are assumed to vary through the thickness of the plate according to two different distribution types. Governing equations are derived based on the classical shell theory taking into account Von Karman nonlinearity and initial geometrical imperfection. Explicit relations of load–deflection curves for rectangular porous plates are determined by applying stress function and Galerkin’s method. The accuracy of present theoretical formulation is verified by comparing it with available results in the literature. The effects of varying porosity distribution, porosity coefficient, boundary condition and imperfection on post-buckling behavior of the porous plate are studied in detail. A parametric study is carried out to investigate the effects of varying porosity distribution, porosity coefficient, boundary condition and imperfection on post-buckling behavior of the porous plate. The results show that the critical buckling loads decrease with increasing porosity coefficient and the post-buckling curves for nonlinear symmetric porosity distribution are always higher than those for nonlinear non-symmetric porosity.


Author(s):  
Kenji Yamamoto ◽  
Hayato Utebi

In order to analyze the buckling behavior of lattice shells stiffened by cables or slender braces without pre-tension, it is necessary to consider the no-compression property of braces. This paper proposes an innovative method of linear buckling analysis that considers the no-compression property of braces. Moreover, in order to examine the proposed method's validity, its results are compared with the results from a nonlinear buckling analysis with geometrical nonlinearity and material nonlinearity to express the no-compression property of braces. The results show that the proposed method can well-predict the buckling behaviors of lattice shells stiffened by tension braces.


2019 ◽  
Vol 54 (9) ◽  
pp. 1141-1160 ◽  
Author(s):  
T Shojaee ◽  
B Mohammadi ◽  
R Madoliat

In the notched structures, to achieve maximum buckling resistance in comparison with structural weight, the optimal design of a stiffener is very important. In this research, after a review of the existing literature, nonlinear buckling behavior of composite plates containing the cutout with three different designs of stringer was investigated. The considered stiffeners are planer, longitudinal, and ring types. The buckling experiments were carried out on the stiffened plates containing a circular notch. Moreover, to achieve an efficient prediction of the buckling in the stiffened laminate with the hole, a finite strip method is developed based on the Airy stress function and von Karman’s large deformation equations. Studies show that there is a good agreement between the postbuckling behaviors derived from developed finite strip method with experimental results. Fast convergence of the considered finite strip method compared with the finite element results shows its efficiency for prediction of buckling behavior in laminated composites. The results show that the buckling load-bearing capacities of perforated plates with a longitudinal and planer stiffener are higher compared with the other stiffener, respectively. The detailed parametric study on the effects of thickness of the plate and stiffener and opening diameter on buckling behavior was performed using experiments and modeling.


2012 ◽  
Vol 256-259 ◽  
pp. 792-795
Author(s):  
Bo Song ◽  
Shuai Huang ◽  
Wen Shan He ◽  
Wei Wei

Based on the 3D finite element model of the wind power tower, buckling behavior of the wind power tower in different wind directions is analyzed, and the effect considering geometry nonlinearity and considering the material and geometry nonlinearity to the buckling analysis is studied. The results show when the ratio of the radius of the tower drum and the length of the element is 18.75, the calculated precision can reach 95%. Local buckling of the wind power tower first appears, and buckling load and displacement considering the material and geometric nonlinearity reduce 52% and 58% compared with that only considering geometry nonlinearity. The linear and nonlinear buckling load of the wind power tower which is 90° sidewind are 1.8 and 1.2 times than those facing the wind direction.


2020 ◽  
Vol 7 (1) ◽  
pp. 101-108
Author(s):  
Xiangtong Yang ◽  
Xinpu Shen ◽  
Xiaohu Cui ◽  
Kelin Wang ◽  
Guoyang Shen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document