Iterative approximation for split equality fixed point problem for family of multivalued mappings

Author(s):  
Yekini Shehu
Mathematics ◽  
2019 ◽  
Vol 7 (8) ◽  
pp. 749 ◽  
Author(s):  
Mujahid Abbas ◽  
Yusuf Ibrahim ◽  
Abdul Rahim Khan ◽  
Manuel De la Sen

The aim of this paper is to introduce a modified viscosity iterative method to approximate a solution of the split variational inclusion problem and fixed point problem for a uniformly continuous multivalued total asymptotically strictly pseudocontractive mapping in C A T ( 0 ) spaces. A strong convergence theorem for the above problem is established and several important known results are deduced as corollaries to it. Furthermore, we solve a split Hammerstein integral inclusion problem and fixed point problem as an application to validate our result. It seems that our main result in the split variational inclusion problem is new in the setting of C A T ( 0 ) spaces.


Filomat ◽  
2018 ◽  
Vol 32 (8) ◽  
pp. 2963-2976
Author(s):  
Maher Berzig ◽  
Imed Kédim ◽  
Aymen Mannai

Our purpose in this paper is to present a fixed point result for multivalued mappings satisfying nonlinear quasi-contractive condition only on related points. Moreover, we provide a qualitative study of well-posedness, limit shadowing property and Ulam-Hyers stability of our fixed point problem. As application, we discuss the existence of a unique solution for a class of differential inclusions.


2021 ◽  
Vol 54 (1) ◽  
pp. 335-358
Author(s):  
Oluwatosin T. Mewomo ◽  
Olawale K. Oyewole

Abstract In this paper, we study the problem of finding a common solution of split generalized vector mixed equlibrium problem (SGVMEP), fixed point problem (FPP) and variational inequality problem (VIP). We propose an inertial-type iterative algorithm, which uses a projection onto a feasible set and a linesearch, which can be easily calculated. We prove a strong convergence of the sequence generated by the proposed algorithm to a common solution of SGVMEP, fixed point of a quasi- ϕ \phi -nonexpansive mapping and VIP for a general class of monotone mapping in 2-uniformly convex and uniformly smooth Banach space E 1 {E}_{1} and a smooth, strictly convex and reflexive Banach space E 2 {E}_{2} . Some numerical examples are presented to illustrate the performance of our method. Our result improves some existing results in the literature.


Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 158
Author(s):  
Liliana Guran ◽  
Monica-Felicia Bota

The purpose of this paper is to prove fixed point theorems for cyclic-type operators in extended b-metric spaces. The well-posedness of the fixed point problem and limit shadowing property are also discussed. Some examples are given in order to support our results, and the last part of the paper considers some applications of the main results. The first part of this section is devoted to the study of the existence of a solution to the boundary value problem. In the second part of this section, we study the existence of solutions to fractional boundary value problems with integral-type boundary conditions in the frame of some Caputo-type fractional operators.


Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1161
Author(s):  
Jinhua Zhu ◽  
Jinfang Tang ◽  
Shih-sen Chang ◽  
Min Liu ◽  
Liangcai Zhao

In this paper, we introduce an iterative algorithm for finding a common solution of a finite family of the equilibrium problems, quasi-variational inclusion problems and fixed point problem on Hadamard manifolds. Under suitable conditions, some strong convergence theorems are proved. Our results extend some recent results in literature.


Sign in / Sign up

Export Citation Format

Share Document