Evaluation of physicochemical pretreatment of tomato plant for aerobic and anaerobic biodegradation

2019 ◽  
Vol 9 (3) ◽  
pp. 489-497 ◽  
Author(s):  
Aida Gil ◽  
Jose A. Siles ◽  
M. Carmen Gutiérrez ◽  
M. Ángeles Martín
2018 ◽  
Author(s):  
Diego Alzate-Sanchez ◽  
Yuhan Ling ◽  
Chenjun Li ◽  
Benjamin Frank ◽  
Reiner Bleher ◽  
...  

This manuscript describes cyclodextrin polymers formed as a thin coating on microcrystalline cellulose. The resulting polymer/cellulose composite shows promising performance for removing organic pollutants from water and can be packed into columns for continuous-flow experiments. The polymer/cellulose composite also shows excellent resistance to aerobic and anaerobic biodegradation.


1996 ◽  
Vol 34 (5-6) ◽  
pp. 327-334 ◽  
Author(s):  
David L. Freedman ◽  
Bryan M. Caenepeel ◽  
Byung J. Kim

Treatment of wastewater containing nitrocellulose (NC) fines is a significant hazardous waste problem currently facing manufacturers of energetic compounds. Previous studies have ruled out the use of biological treatment, since NC has appeared to be resistant to aerobic and anaerobic biodegradation. The objective of this study was to examine NC biotransformation in a mixed methanogenic enrichment culture. A modified cold-acid digestion technique was used to measure the percentage of oxidized nitrogen (N) remaining on the NC. After 11 days of incubation in cultures amended with NC (10 g/L) and methanol (9.9 mM), the % N (w/w) on the NC decreased from 13.3% to 10.1%. The presence of NC also caused a 16% reduction in methane output. Assuming the nitrate ester on NC was reduced to N2, the decrease in CH4 represented almost exactly the amount of reducing equivalents needed for the observed decrease in oxidized N. An increase in the heat of combustion of the transformed NC correlated with the decrease in % N. There was no statistically significant decrease in % N when only NC was added to the culture, or in controls that contained only the sulfide-reduced basal medium. The biotransformed NC has a % N comparable to nonexplosive nitrated celluloses, suggesting that anaerobic treatment may be a technically feasible process for rendering NC nonhazardous.


1995 ◽  
Vol 31 (12) ◽  
pp. 3309-3327 ◽  
Author(s):  
Hedeff I. Essaid ◽  
Barbara A. Bekins ◽  
E. Michael Godsy ◽  
Ean Warren ◽  
Mary Jo Baedecker ◽  
...  

2018 ◽  
Author(s):  
Diego Alzate-Sanchez ◽  
Yuhan Ling ◽  
Chenjun Li ◽  
Benjamin Frank ◽  
Reiner Bleher ◽  
...  

This manuscript describes cyclodextrin polymers formed as a thin coating on microcrystalline cellulose. The resulting polymer/cellulose composite shows promising performance for removing organic pollutants from water and can be packed into columns for continuous-flow experiments. The polymer/cellulose composite also shows excellent resistance to aerobic and anaerobic biodegradation.


1997 ◽  
Vol 35 (8) ◽  
pp. 69-76 ◽  
Author(s):  
Akiko Yamane ◽  
Koji Sakakibara ◽  
Masaaki Hosomi ◽  
Akihiko Murakami

Aerobic and anaerobic biodegradation rates of petroleum hydrocarbons, i.e., hexadecane (HEX), phenanthrene (PHE), and anthracene (ANT), were determined in estuarine sediment of the Tama River in urban Tokyo, followed by estimating their respective degradation potential. While in a sediment slurry, the aerobic biodegradation rates of these petroleum hydrocarbons ranged from 40 to 70 μg·g−1 dry sediment· day−1. The anaerobic biodegradation rate of HEX was found to be 5 - 8 μg·g−1 dry sediment· day−1, whereas that of PHE and ANT could not be detected following a 2-month incubation. Aerobic degradation of HEX was not affected by coexistence with either PHE or ANT, nor by the salinity level. The number of HEX-, PHE-, or ANT-utilizing bacteria ranged from 5 - 10% of the total number of aerobic heterotrophic bacteria. We calculated their biodegradation potentials using the biomass of naturally existing petroleum hydrocarbon-utilizing bacteria present in the sampled sediment, with results for HEX, PHE, and ANT being 1.0 − 3.5, 4.2 × 10−2, and 1.2 × 10−2 − 9.4 × 10−1 μg·g−1 dry sediment· day−1, respectively. In the aerobic tidal sediment of the Tama River, the purification potentials of HEX, PHE, and ANT were assessed to be approximately equal to their accumulation potentials occurring at the normal water level.


2017 ◽  
Vol 93 (11) ◽  
Author(s):  
Jacob E. Munro ◽  
Önder Kimyon ◽  
Deborah J. Rich ◽  
Joanna Koenig ◽  
Sihui Tang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document