Nuclear Reactions with Stable and Radioactive Ion Beams at LAFN-IFUSP

Author(s):  
Alinka Lépine-Szily
1983 ◽  
Vol 30 (2) ◽  
pp. 1160-1163 ◽  
Author(s):  
R. C. Haight ◽  
G. J. Mathews ◽  
R. M. White ◽  
L. A. Aviles ◽  
S. E. Woodard

2019 ◽  
Vol 22 ◽  
pp. 10
Author(s):  
M. Veselsky ◽  
J. Klimo ◽  
N. Vujisicova ◽  
G. A. Souliotis

Opportunities for investigations of nuclear reactions at the future nuclear physics facilities such as radioactive ion beam facilities and high-power laser facilities are considered. Post-accelerated radioactive ion beams offer possibilities for study of the role of isospin asymmetry in the reaction mechanisms at various beam energies. Fission barrier heights of neutron-deficient nuclei can be directly determined at low energies. Post-accelerated radioactive ion beams, specifically at the future facilities such as HIE-ISOLDE, SPIRAL-2 or RAON-RISP can be also considered as a candidate for production of very neutron-rich nuclei via mechanism of multi-nucleon transfer. High-power laser facilities such as ELI-NP offer possibilities for nuclear reaction studies with beams of unprecedented properties. Specific cases such as ternary reactions or even production of super-heavy elements are considered.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2864
Author(s):  
Eva Kröll ◽  
Miriana Vadalà ◽  
Juliana Schell ◽  
Simon Stegemann ◽  
Jochen Ballof ◽  
...  

Highly porous yttrium oxide is fabricated as ion beam target material in order to produce radioactive ion beams via the Isotope Separation On Line (ISOL) method. Freeze casting allows the formation of an aligned pore structure in these target materials to improve the isotope release. Aqueous suspensions containing a solid loading of 10, 15, and 20 vol% were solidified with a unidirectional freeze-casting setup. The pore size and pore structure of the yttrium oxide freeze-casts are highly affected by the amount of solid loading. The porosity ranges from 72 to 84% and the crosslinking between the aligned channels increases with increasing solid loading. Thermal aging of the final target materials shows that an operation temperature of 1400 °C for 96 h has no significant effect on the microstructure. Thermo-mechanical calculation results, based on a FLUKA simulation, are compared to measured compressive strength and forecast the mechanical integrity of the target materials during operation. Even though they were developed for the particular purpose of the production of short-lived radioactive isotopes, the yttria freeze-cast scaffolds can serve multiple other purposes, such as catalyst support frameworks or high-temperature fume filters.


2013 ◽  
Vol T152 ◽  
pp. 014011 ◽  
Author(s):  
Karlheinz Langanke ◽  
Hendrik Schatz

Sign in / Sign up

Export Citation Format

Share Document