scholarly journals Reproduction of rebel workers in honeybee (Apis mellifera) colonies

Author(s):  
Karolina Kuszewska ◽  
Agnieszka Wącławska ◽  
Michal Woyciechowski
Keyword(s):  
2018 ◽  
Vol 74 (1) ◽  
pp. 6013-2018
Author(s):  
ANETA STRACHECKA ◽  
ALEKSANDRA ŁOŚ ◽  
JOANNA FILIPCZUK ◽  
MICHAŁ SCHULZ

Honey bees (Apis mellifera) are constantly exposed to contact with many types of pathogens. However, during evolution they developed a number of immune mechanisms. At the individual level, they comprise 1) resistance mechanisms associated with anatomical and physiological barriers of the body, 2) cell-mediated immunity involving hemocytes (including plasmocytes, lamellocytes, and granulocytes), 3a) congenital humoral resistance related to the activity of lysozyme (N-acetylmuramylhydrolase), the prophenylooxidase system (ProPO) and hemagglutinins (lectins), and 3b) induced humoral resistence based on the action of antimicrobial peptides: apidicines, hymenoptecin, and defensins. In addition to the individual resistance of each bee, there is also a defense mechanism activated at the colony level. Shared secretion resistance is connected with the presence of antipathogenic compounds in secreta and in bee products. Social immunity is associated with hygienic and nursing behaviors, as well as with age polyethism in the colony, swarming (and the emergence of rebel workers), and the changing behavior of sick individuals. Many aspects and interactions between different types of resistance and immunity still remain unexplored. However, current research trends revolve around clarifying uncertainties so as to strengthen the natural resistance of bees and fight against pathogens that threaten the insects..


Apidologie ◽  
2019 ◽  
Vol 50 (6) ◽  
pp. 821-832
Author(s):  
Wiktoria Rojek ◽  
Karolina Kuszewska ◽  
Monika Ostap-Chęć ◽  
Michał Woyciechowski

AbstractA recent study showed that worker larvae fed in a queenless colony develop into another female polyphenic form—rebel workers. The rebel workers are more queen-like than normal workers because they have higher reproductive potential revealed by more ovarioles in their ovaries. However, it was unclear whether eggs laid by rebel workers avoided worker policing. Worker-laid eggs are normally eaten by other workers in a queenright colony. The aim of this study was to compare the survival of three classes of eggs, namely, those laid by normal workers, rebel workers, and the queen. All eggs were tested in queenright colonies. We expected that rebel workers would avoid policing by laying more queen-like eggs. Contrary to our expectations, eggs laid by rebel workers were eaten by other workers, as were eggs laid by normal workers, and only a few worker-laid eggs (both normal and rebel) survived for more than 3 h. Therefore, in a queenright colony, eggs laid by rebel workers do not avoid policing.


Animals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3245
Author(s):  
Aneta Strachecka ◽  
Krzysztof Olszewski ◽  
Karolina Kuszewska ◽  
Jerzy Paleolog ◽  
Michał Woyciechowski

Rebel workers develop from eggs laid by the previous queen, before it went swarming and left the colony orphaned, until the emergence of a new queen. In contrast to normal workers developing in the queen’s presence, rebels are set to reproduce and avoid rearing of successive bee generations. They have more ovarioles in their ovaries, as well as more developed mandibular glands and underdeveloped hypopharyngeal glands, just like the queen. We posited that rebels are not only similar to queens in some anatomical features, but also develop in a shorter time in comparison to normal workers. Therefore, the aim of this study was to compare preimaginal development duration in rebel and normal workers. The results show that rebels, i.e., workers with a higher reproductive potential, had a significantly shorter preimaginal development period (mean ± SD, 19.24 ± 0.07 days) than normal workers (22.29 ± 0.32 days). Our result confirmed that workers who develop in a queen-less colony undergo a shorter preimaginal development than those in a queen-right colony.


Author(s):  
Maria Anna Pabst

In addition to the compound eyes, honeybees have three dorsal ocelli on the vertex of the head. Each ocellus has about 800 elongated photoreceptor cells. They are paired and the distal segment of each pair bears densely packed microvilli forming together a platelike fused rhabdom. Beneath a common cuticular lens a single layer of corneagenous cells is present.Ultrastructural studies were made of the retina of praepupae, different pupal stages and adult worker bees by thin sections and freeze-etch preparations. In praepupae the ocellar anlage consists of a conical group of epidermal cells that differentiate to photoreceptor cells, glial cells and corneagenous cells. Some photoreceptor cells are already paired and show disarrayed microvilli with circularly ordered filaments inside. In ocelli of 2-day-old pupae, when a retinogenous and a lentinogenous cell layer can be clearly distinguished, cell membranes of the distal part of two photoreceptor cells begin to interdigitate with each other and so start to form the definitive microvilli. At the beginning the microvilli often occupy the whole width of the developing rhabdom (Fig. 1).


2016 ◽  
Vol 51 (2) ◽  
pp. 156-171
Author(s):  
А.В. СПРЫГИН ◽  
◽  
Ю.Ю. БАБИН ◽  
Е.М. ХАНБЕКОВА ◽  
Л.Е. РУБЦОВА ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document