scholarly journals Evaluating the accuracy of ALS-based removal estimates against actual logging data

2020 ◽  
Vol 77 (3) ◽  
Author(s):  
Ville Vähä-Konka ◽  
Matti Maltamo ◽  
Timo Pukkala ◽  
Kalle Kärhä

Abstract Key message We examined the accuracy of the stand attribute data based on airborne laser scanning (ALS) provided by the Finnish Forest Centre. The precision of forest inventory data was compared for the first time with operative logging data measured by the harvester. Context Airborne laser scanning (ALS) is increasingly used together with models to predict the stand attributes of boreal forests. The information is updated by growth models. Information produced by remote sensing, model prediction, and growth simulation needs field verification. The data collected by harvesters on logging sites provide a means to evaluate and verify the accuracy of the ALS-based data. Aims This study investigated the accuracy of ALS-based forest inventory data provided by the Finnish Forest Centre at the stand level, using harvester data as the reference. Special interest was on timber assortment volumes where the quality reductions of sawlog are model predictions in ALS-based data and true realized reductions in the logging data. Methods We examined the accuracy of total volume and timber assortment volumes by comparing ALS-based data and operative logging data measured by a harvester. This was done both for clear cuttings and thinning sites. Accuracy of the identification of the dominant tree species of the stand was examined using the Kappa coefficient. Results In clear-felling sites, the total harvest removals based on ALS and model prediction had a RMSE% of 26.0%. In thinning, the corresponding difference in the total harvested removal was 42.4%. Compared to logged volume, ALS-based prediction overestimated sawlog removals in clear cuttings and underestimated pulpwood removals. Conclusion The study provided valuable information on the accuracy of ALS-based stand attribute data. Our results showed that ALS-based data need better methods to predict the technical quality of harvested trees, to avoid systematic overestimates of sawlog volume. We also found that the ALS-based estimates do not accurately predict the volume of trees removed in actual thinnings.

2016 ◽  
Vol 186 ◽  
pp. 626-636 ◽  
Author(s):  
Liviu Theodor Ene ◽  
Erik Næsset ◽  
Terje Gobakken ◽  
Ernest William Mauya ◽  
Ole Martin Bollandsås ◽  
...  

2017 ◽  
Vol 188 ◽  
pp. 106-117 ◽  
Author(s):  
Liviu Theodor Ene ◽  
Erik Næsset ◽  
Terje Gobakken ◽  
Ole Martin Bollandsås ◽  
Ernest William Mauya ◽  
...  

2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Johannes Schumacher ◽  
Marius Hauglin ◽  
Rasmus Astrup ◽  
Johannes Breidenbach

Abstract Background The age of forest stands is critical information for forest management and conservation, for example for growth modelling, timing of management activities and harvesting, or decisions about protection areas. However, area-wide information about forest stand age often does not exist. In this study, we developed regression models for large-scale area-wide prediction of age in Norwegian forests. For model development we used more than 4800 plots of the Norwegian National Forest Inventory (NFI) distributed over Norway between latitudes 58° and 65° N in an 18.2 Mha study area. Predictor variables were based on airborne laser scanning (ALS), Sentinel-2, and existing public map data. We performed model validation on an independent data set consisting of 63 spruce stands with known age. Results The best modelling strategy was to fit independent linear regression models to each observed site index (SI) level and using a SI prediction map in the application of the models. The most important predictor variable was an upper percentile of the ALS heights, and root mean squared errors (RMSEs) ranged between 3 and 31 years (6% to 26%) for SI-specific models, and 21 years (25%) on average. Mean deviance (MD) ranged between − 1 and 3 years. The models improved with increasing SI and the RMSEs were largest for low SI stands older than 100 years. Using a mapped SI, which is required for practical applications, RMSE and MD on plot level ranged from 19 to 56 years (29% to 53%), and 5 to 37 years (5% to 31%), respectively. For the validation stands, the RMSE and MD were 12 (22%) and 2 years (3%), respectively. Conclusions Tree height estimated from airborne laser scanning and predicted site index were the most important variables in the models describing age. Overall, we obtained good results, especially for stands with high SI. The models could be considered for practical applications, although we see considerable potential for improvements if better SI maps were available.


2018 ◽  
Vol 206 ◽  
pp. 254-259 ◽  
Author(s):  
Ronald E. McRoberts ◽  
Qi Chen ◽  
Dale D. Gormanson ◽  
Brian F. Walters

2010 ◽  
Vol 40 (12) ◽  
pp. 2427-2438 ◽  
Author(s):  
Md. Nurul Islam ◽  
Mikko Kurttila ◽  
Lauri Mehtätalo ◽  
Timo Pukkala

Errors in inventory data may lead to inoptimal decisions that ultimately result in financial losses for forest owners. We estimated the expected monetary losses resulting from data errors that are similar to errors in laser-based forest inventory. The mean loss was estimated for 67 stands by simulating 100 realizations of inventory data for each stand with errors that mimic those in airborne laser scanning (ALS) based inventory. These realizations were used as input data in stand management optimization, which maximized the present value of all future net incomes (NPV). The inoptimality loss was calculated as the difference between the NPV of the optimal solution and the true NPV of the solution obtained with erroneous input data. The results showed that the mean loss exceeded €300·ha–1 (US$425·ha–1) in 84% of the stands. On average, the losses increased with decreasing stand age and mean diameter. Furthermore, increasing errors in the basal area weighted mean diameter and basal area of spruce were found to significantly increase the loss. It has been discussed that improvements in the accuracy of ALS-based inventory could be financially justified.


Author(s):  
Roope Ruotsalainen ◽  
Timo Pukkala ◽  
Annika Kangas ◽  
Mari Myllymäki ◽  
Petteri Packalen

Forestry can help to mitigate climate change by storing carbon in trees, forest soils and wood products. Forest owners can be subsidized if forestry removes carbon from the atmosphere and taxed if forestry produces emissions. Errors in forest inventory data can lead to losses in net present value (NPV) if management prescriptions are selected based on erroneous data but not on correct data. This study assesses the effect of inventory errors on economic losses in forest management when the objective is to maximize the total NPV of timber production and carbon payments. Errors similar as in airborne laser scanning based forest inventory were simulated in stand attributes with a vine copula approach and nearest neighbor method. Carbon payments were based on the total carbon balance of forestry (incl. trees, soil and wood-based products) and calculations were carried out for 30 years using carbon prices of € 0, 50, 75, 100, 125 and 150 t-1. The results revealed that increasing the carbon price and decreasing the level of errors led to decreased losses in NPV. The inclusion of carbon payments for the maximization of the NPV decreased the effect of errors on the losses, which suggests that the value of collecting more accurate forest inventory data may decrease when the carbon price increases.


Sign in / Sign up

Export Citation Format

Share Document