Inoptimality losses in forest management decisions caused by errors in an inventory based on airborne laser scanning and aerial photographs

2010 ◽  
Vol 40 (12) ◽  
pp. 2427-2438 ◽  
Author(s):  
Md. Nurul Islam ◽  
Mikko Kurttila ◽  
Lauri Mehtätalo ◽  
Timo Pukkala

Errors in inventory data may lead to inoptimal decisions that ultimately result in financial losses for forest owners. We estimated the expected monetary losses resulting from data errors that are similar to errors in laser-based forest inventory. The mean loss was estimated for 67 stands by simulating 100 realizations of inventory data for each stand with errors that mimic those in airborne laser scanning (ALS) based inventory. These realizations were used as input data in stand management optimization, which maximized the present value of all future net incomes (NPV). The inoptimality loss was calculated as the difference between the NPV of the optimal solution and the true NPV of the solution obtained with erroneous input data. The results showed that the mean loss exceeded €300·ha–1 (US$425·ha–1) in 84% of the stands. On average, the losses increased with decreasing stand age and mean diameter. Furthermore, increasing errors in the basal area weighted mean diameter and basal area of spruce were found to significantly increase the loss. It has been discussed that improvements in the accuracy of ALS-based inventory could be financially justified.

2020 ◽  
Vol 12 (11) ◽  
pp. 1854
Author(s):  
Dominik Seidel ◽  
Peter Annighöfer ◽  
Martin Ehbrecht ◽  
Paul Magdon ◽  
Stephan Wöllauer ◽  
...  

The three-dimensional forest structure is an important driver of several ecosystem functions and services. Recent advancements in laser scanning technologies have set the path to measuring structural complexity directly from 3D point clouds. Here, we show that the box-dimension (Db) from fractal analysis, a measure of structural complexity, can be obtained from airborne laser scanning data. Based on 66 plots across different forest types in Germany, each 1 ha in size, we tested the performance of the Db by evaluating it against conventional ground-based measures of forest structure and commonly used stand characteristics. We found that the Db was related (0.34 < R < 0.51) to stand age, management intensity, microclimatic stability, and several measures characterizing the overall stand structural complexity. For the basal area, we could not find a significant relationship, indicating that structural complexity is not tied to the basal area of a forest. We also showed that Db derived from airborne data holds the potential to distinguish forest types, management types, and the developmental phases of forests. We conclude that the box-dimension is a promising measure to describe the structural complexity of forests in an ecologically meaningful way.


2019 ◽  
Vol 11 (6) ◽  
pp. 661 ◽  
Author(s):  
Sami Ullah ◽  
Matthias Dees ◽  
Pawan Datta ◽  
Petra Adler ◽  
Mathias Schardt ◽  
...  

Digital stereo aerial photographs are periodically updated in many countries and offer a viable option for the regular update of information on forest variables. We compared the potential of image-based point clouds derived from three different sets of aerial photographs with airborne laser scanning (ALS) to assess plot-level forest attributes in a mountain environment. The three data types used were (A) high overlapping pan-sharpened (80/60%); (B) high overlapping panchromatic band (80/60%); and (C) standard overlapping pan-sharpened stereo aerial photographs (60/30%). We used height and density metrics at the plot level derived from image-based and ALS point clouds as the explanatory variables and Lorey’s mean height, timber volume, and mean basal area as the response variables. We obtained a RMSE = 8.83%, 29.24% and 35.12% for Lorey’s mean height, volume, and basal area using ALS data, respectively. Similarly, we obtained a RMSE = 9.96%, 31.13%, and 35.99% and RMSE = 11.28%, 31.01%, and 35.66% for Lorey’s mean height, volume and basal area using image-based point clouds derived from pan-sharpened stereo aerial photographs with 80/60% and 60/30% overlapping, respectively. For image-based point clouds derived from a panchromatic band of stereo aerial photographs (80%/60%), we obtained an RMSE = 10.04%, 31.19% and 35.86% for Lorey’s mean height, volume, and basal area, respectively. The overall findings indicated that the performance of image-based point clouds in all cases were as good as ALS. This highlights that in the presence of a highly accurate digital terrain model (DTM) from ALS, image-based point clouds offer a viable option for operational forest management in all countries where stereo aerial photographs are updated on a routine basis.


2016 ◽  
Vol 62 (1) ◽  
pp. 39-47 ◽  
Author(s):  
Ladislav Kulla ◽  
Ivan Sačkov ◽  
Miroslav Juriš

Abstract Even if stand inventories based on growth tables have been widely discussed over the last years, this method of forest mensuration is still widely applied due to favourable ratio between costs and achievable precision of stand growing stock estimation. The aim of the study was to verify the potential of airborne laser scanning data (ALS) for direct estimation of mean stand height and mean stand density (stocking) as fundamental inputs for forest mensuration based on yield tables. The material from two reference plots with substantially different stand structure was processed by REFLEX software, and confronted with the results of the precise terrestrial inventory. The number of detected tree tops decreased from 100% in the case of super-dominant trees to 30% and 5% in the case of supressed trees at the homogeneous and heterogeneous plot, respectively. The correlation of ALS heights with terrestrially measured heights was R = 0.88 at the homogenous plot, and R = 0.77 at the heterogeneous plot. The tendency to underestimate dominant and to overestimate suppressed trees was revealed at both plots, but was more pronounced at the heterogeneous one. Nevertheless we justified that the mean ALS height calculated from the heights of the detected trees represented the biometric mean stand height linked to the stem with the mean basal area quite well. The stocking estimated by REFLEX software according to delineated crowns´ area was also closer to the real value of stocking than the one obtained by the routine mensuration procedure. The results indicate promising potential of the ALS data processed by REFLEX software to rationalise forest mensuration based on yield tables in even-aged forest structures.


2020 ◽  
Vol 77 (3) ◽  
Author(s):  
Ville Vähä-Konka ◽  
Matti Maltamo ◽  
Timo Pukkala ◽  
Kalle Kärhä

Abstract Key message We examined the accuracy of the stand attribute data based on airborne laser scanning (ALS) provided by the Finnish Forest Centre. The precision of forest inventory data was compared for the first time with operative logging data measured by the harvester. Context Airborne laser scanning (ALS) is increasingly used together with models to predict the stand attributes of boreal forests. The information is updated by growth models. Information produced by remote sensing, model prediction, and growth simulation needs field verification. The data collected by harvesters on logging sites provide a means to evaluate and verify the accuracy of the ALS-based data. Aims This study investigated the accuracy of ALS-based forest inventory data provided by the Finnish Forest Centre at the stand level, using harvester data as the reference. Special interest was on timber assortment volumes where the quality reductions of sawlog are model predictions in ALS-based data and true realized reductions in the logging data. Methods We examined the accuracy of total volume and timber assortment volumes by comparing ALS-based data and operative logging data measured by a harvester. This was done both for clear cuttings and thinning sites. Accuracy of the identification of the dominant tree species of the stand was examined using the Kappa coefficient. Results In clear-felling sites, the total harvest removals based on ALS and model prediction had a RMSE% of 26.0%. In thinning, the corresponding difference in the total harvested removal was 42.4%. Compared to logged volume, ALS-based prediction overestimated sawlog removals in clear cuttings and underestimated pulpwood removals. Conclusion The study provided valuable information on the accuracy of ALS-based stand attribute data. Our results showed that ALS-based data need better methods to predict the technical quality of harvested trees, to avoid systematic overestimates of sawlog volume. We also found that the ALS-based estimates do not accurately predict the volume of trees removed in actual thinnings.


2019 ◽  
Vol 11 (3) ◽  
pp. 261 ◽  
Author(s):  
Darío Domingo ◽  
Rafael Alonso ◽  
María Teresa Lamelas ◽  
Antonio Luis Montealegre ◽  
Francisco Rodríguez ◽  
...  

This study assesses model temporal transferability using airborne laser scanning (ALS) data acquired over two different dates. Seven forest attributes (i.e. stand density, basal area, squared mean diameter, dominant diameter, tree dominant height, timber volume, and total tree biomass) were estimated using an area-based approach in Mediterranean Aleppo pine forests. Low-density ALS data were acquired in 2011 and 2016 while 147 forest inventory plots were measured in 2013, 2014, and 2016. Single-tree growth models were used to generate concomitant field data for 2011 and 2016. A comparison of five selection techniques and five regression methods were performed to regress field observations against ALS metrics. The selection of the best regression models fitted for each stand attribute, and separately for both 2011 and 2016, was performed following an indirect approach. Model performance and temporal transferability were analyzed by extrapolating the best fitted models from 2011 to 2016 and inversely from 2016 to 2011 using the direct approach. Non-parametric support vector machine with radial kernel was the best regression method with average relative % root mean square error differences of 2.13% for 2011 models and 1.58% for 2016 ones.


Sign in / Sign up

Export Citation Format

Share Document