scholarly journals Feeder Cells Free Rabbit Oral Mucosa Epithelial Cell Sheet Engineering

2018 ◽  
Vol 15 (3) ◽  
pp. 321-332 ◽  
Author(s):  
Joan Oliva ◽  
Ken Ochiai ◽  
Arjie Florentino ◽  
Fawzia Bardag-Gorce ◽  
Andrew Wood ◽  
...  
2015 ◽  
Vol 13 (2) ◽  
pp. 150-163 ◽  
Author(s):  
Fawzia Bardag-Gorce ◽  
Joan Oliva ◽  
Andrew Wood ◽  
Richard Hoft ◽  
Derek Pan ◽  
...  

2021 ◽  
Vol 22 (19) ◽  
pp. 10322
Author(s):  
Luong Huu Dang ◽  
Shih-Han Hung ◽  
Yuan Tseng ◽  
Ly Xuan Quang ◽  
Nhi Thao Ngoc Le ◽  
...  

Decellularization has emerged as a potential solution for tracheal replacement. As a fully decellularized graft failed to achieve its purposes, the de-epithelialization partial decellularization protocol appeared to be a promising approach for fabricating scaffolds with preserved mechanical properties and few immune rejection responses after transplantation. Nevertheless, a lack of appropriate concurrent epithelialization treatment can lead to luminal stenosis of the transplant and impede its eventual success. To improve re-epithelialization, autologous nasal epithelial cell sheets generated by our cell sheet engineering platform were utilized in this study under an in vivo rabbit model. The newly created cell sheets have an intact and transplantable appearance, with their specific characteristics of airway epithelial origin being highly expressed upon histological and immunohistochemical analysis. Subsequently, those cell sheets were incorporated with a partially decellularized tracheal graft for autograft transplantation under tracheal partial resection models. The preliminary results two months post operation demonstrated that the transplanted patches appeared to be wholly integrated into the host trachea with adequate healing of the luminal surface, which was confirmed via endoscopic and histologic evaluations. The satisfactory result of this hybrid scaffold protocol could serve as a potential solution for tracheal reconstructions in the future.


2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Fawzia Bardag-Gorce ◽  
Richard H. Hoft ◽  
Andrew Wood ◽  
Joan Oliva ◽  
Hope Niihara ◽  
...  

The role of E-cadherin in epithelial barrier function of cultured autologous oral mucosa epithelial cell sheet (CAOMECS) grafts was examined. CAOMECS were cultured on a temperature-responsive surface and grafted onto rabbit corneas with Limbal Stem Cell Deficiency (LSCD). E-cadherin levels were significantly higher in CAOMECS compared to normal and LSCD epithelium. Beta-catenin colocalized with E-cadherin in CAOMECS cell membranes while phosphorylated beta-catenin was significantly increased. ZO-1, occludin, and Cnx43 were also strongly expressed in CAOMECS. E-cadherin and beta-catenin localization at the cell membrane was reduced in LSCD corneas, while CAOMECS-grafted corneas showed a restoration of E-cadherin and beta-catenin expression. LSCD corneas did not show continuous staining for ZO-1 or for Cnx43, while CAOMECS-grafted corneas showed a positive expression of ZO-1 and Cnx43. Cascade Blue® hydrazide did not pass through CAOMECS. Because E-cadherin interactions are calcium-dependent, EGTA was used to chelate calcium and disrupt cell adhesion. EGTA-treated CAOMECS completely detached from cell culture surface, and E-cadherin levels were significantly decreased. In conclusion, E cadherin high expression contributed to CAOMECS tight and gap junction protein recruitment at the cell membrane, thus promoting cellular adhesion and a functional barrier to protect the ocular surface.


2015 ◽  
Vol 103 (12) ◽  
pp. 3825-3833 ◽  
Author(s):  
Akiyuki Hasegawa ◽  
Yuji Haraguchi ◽  
Tatsuya Shimizu ◽  
Teruo Okano

2017 ◽  
Vol 139 (10) ◽  
Author(s):  
Sandeep P. Dumbali ◽  
Lanju Mei ◽  
Shizhi Qian ◽  
Venkat Maruthamuthu

Epithelial cells form quasi-two-dimensional sheets that function as contractile media to effect tissue shape changes during development and homeostasis. Endogenously generated intrasheet tension is a driver of such changes, but has predominantly been measured in the presence of directional migration. The nature of epithelial cell-generated forces transmitted over supracellular distances, in the absence of directional migration, is thus largely unclear. In this report, we consider large epithelial cell colonies which are archetypical multicell collectives with extensive cell–cell contacts but with a symmetric (circular) boundary. Using the traction force imbalance method (TFIM) (traction force microscopy combined with physical force balance), we first show that one can determine the colony-level endogenous sheet forces exerted at the midline by one half of the colony on the other half with no prior assumptions on the uniformity of the mechanical properties of the cell sheet. Importantly, we find that this colony-level sheet force exhibits large variations with orientation—the difference between the maximum and minimum sheet force is comparable to the average sheet force itself. Furthermore, the sheet force at the colony midline is largely tensile but the shear component exhibits significantly more variation with orientation. We thus show that even an unperturbed epithelial colony with a symmetric boundary shows significant directional variation in the endogenous sheet tension and shear forces that subsist at the colony level.


2019 ◽  
Vol 20 (22) ◽  
pp. 5656 ◽  
Author(s):  
Min-Ah Koo ◽  
Mi Hee Lee ◽  
Jong-Chul Park

Cell sheet engineering has evolved rapidly in recent years as a new approach for cell-based therapy. Cell sheet harvest technology is important for producing viable, transplantable cell sheets and applying them to tissue engineering. To date, most cell sheet studies use thermo-responsive systems to detach cell sheets. However, other approaches have been reported. This review provides the progress in cell sheet detachment techniques, particularly reactive oxygen species (ROS)-responsive strategies. Therefore, we present a comprehensive introduction to ROS, their application in regenerative medicine, and considerations on how to use ROS in cell detachment. The review also discusses current limitations and challenges for clarifying the mechanism of the ROS-responsive cell sheet detachment.


2022 ◽  
Vol 19 ◽  
pp. 77-87
Author(s):  
Takeshi Tada ◽  
Hiroe Ohnishi ◽  
Norio Yamamoto ◽  
Fumihiko Kuwata ◽  
Yasuyuki Hayashi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document