Carrier-free Cultured Autologous Oral Mucosa Epithelial Cell Sheet (CAOMECS) for Corneal Epithelium Reconstruction: A Histological Study

2015 ◽  
Vol 13 (2) ◽  
pp. 150-163 ◽  
Author(s):  
Fawzia Bardag-Gorce ◽  
Joan Oliva ◽  
Andrew Wood ◽  
Richard Hoft ◽  
Derek Pan ◽  
...  
2018 ◽  
Vol 15 (3) ◽  
pp. 321-332 ◽  
Author(s):  
Joan Oliva ◽  
Ken Ochiai ◽  
Arjie Florentino ◽  
Fawzia Bardag-Gorce ◽  
Andrew Wood ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Fawzia Bardag-Gorce ◽  
Richard H. Hoft ◽  
Andrew Wood ◽  
Joan Oliva ◽  
Hope Niihara ◽  
...  

The role of E-cadherin in epithelial barrier function of cultured autologous oral mucosa epithelial cell sheet (CAOMECS) grafts was examined. CAOMECS were cultured on a temperature-responsive surface and grafted onto rabbit corneas with Limbal Stem Cell Deficiency (LSCD). E-cadherin levels were significantly higher in CAOMECS compared to normal and LSCD epithelium. Beta-catenin colocalized with E-cadherin in CAOMECS cell membranes while phosphorylated beta-catenin was significantly increased. ZO-1, occludin, and Cnx43 were also strongly expressed in CAOMECS. E-cadherin and beta-catenin localization at the cell membrane was reduced in LSCD corneas, while CAOMECS-grafted corneas showed a restoration of E-cadherin and beta-catenin expression. LSCD corneas did not show continuous staining for ZO-1 or for Cnx43, while CAOMECS-grafted corneas showed a positive expression of ZO-1 and Cnx43. Cascade Blue® hydrazide did not pass through CAOMECS. Because E-cadherin interactions are calcium-dependent, EGTA was used to chelate calcium and disrupt cell adhesion. EGTA-treated CAOMECS completely detached from cell culture surface, and E-cadherin levels were significantly decreased. In conclusion, E cadherin high expression contributed to CAOMECS tight and gap junction protein recruitment at the cell membrane, thus promoting cellular adhesion and a functional barrier to protect the ocular surface.


2021 ◽  
Vol 14 (8) ◽  
pp. 753
Author(s):  
Anna Matysik-Woźniak ◽  
Waldemar A. Turski ◽  
Monika Turska ◽  
Roman Paduch ◽  
Mirosław Łańcut ◽  
...  

Kynurenic acid (KYNA) is an endogenous compound with a multidirectional effect. It possesses antiapoptotic, anti-inflammatory, and antioxidative properties that may be beneficial in the treatment of corneal injuries. Moreover, KYNA has been used successfully to improve the healing outcome of skin wounds. The aim of the present study is to evaluate the effects of KYNA on corneal and conjunctival cells in vitro and the re-epithelization of corneal erosion in rabbits in vivo. Normal human corneal epithelial cell (10.014 pRSV-T) and conjunctival epithelial cell (HC0597) lines were used. Cellular metabolism, cell viability, transwell migration, and the secretion of IL-1β, IL-6, and IL-10 were determined. In rabbits, after corneal de-epithelization, eye drops containing 0.002% and 1% KYNA were applied five times a day until full recovery. KYNA decreased metabolism but did not affect the proliferation of the corneal epithelium. It decreased both the metabolism and proliferation of conjunctival epithelium. KYNA enhanced the migration of corneal but not conjunctival epithelial cells. KYNA reduced the secretion of IL-1β and IL-6 from the corneal epithelium, leaving IL-10 secretion unaffected. The release of all studied cytokines from the conjunctival epithelium exposed to KYNA was unchanged. KYNA at higher concentration accelerated the healing of the corneal epithelium. These favorable properties of KYNA suggest that KYNA containing topical pharmaceutical products can be used in the treatment of ocular surface diseases.


2017 ◽  
Vol 139 (10) ◽  
Author(s):  
Sandeep P. Dumbali ◽  
Lanju Mei ◽  
Shizhi Qian ◽  
Venkat Maruthamuthu

Epithelial cells form quasi-two-dimensional sheets that function as contractile media to effect tissue shape changes during development and homeostasis. Endogenously generated intrasheet tension is a driver of such changes, but has predominantly been measured in the presence of directional migration. The nature of epithelial cell-generated forces transmitted over supracellular distances, in the absence of directional migration, is thus largely unclear. In this report, we consider large epithelial cell colonies which are archetypical multicell collectives with extensive cell–cell contacts but with a symmetric (circular) boundary. Using the traction force imbalance method (TFIM) (traction force microscopy combined with physical force balance), we first show that one can determine the colony-level endogenous sheet forces exerted at the midline by one half of the colony on the other half with no prior assumptions on the uniformity of the mechanical properties of the cell sheet. Importantly, we find that this colony-level sheet force exhibits large variations with orientation—the difference between the maximum and minimum sheet force is comparable to the average sheet force itself. Furthermore, the sheet force at the colony midline is largely tensile but the shear component exhibits significantly more variation with orientation. We thus show that even an unperturbed epithelial colony with a symmetric boundary shows significant directional variation in the endogenous sheet tension and shear forces that subsist at the colony level.


2022 ◽  
Vol 19 ◽  
pp. 77-87
Author(s):  
Takeshi Tada ◽  
Hiroe Ohnishi ◽  
Norio Yamamoto ◽  
Fumihiko Kuwata ◽  
Yasuyuki Hayashi ◽  
...  

Cryobiology ◽  
2018 ◽  
Vol 80 ◽  
pp. 191
Author(s):  
Joan Oliva ◽  
Arjie Florentino ◽  
Yutaka Niihara

1995 ◽  
Vol 43 (4) ◽  
pp. 353-362 ◽  
Author(s):  
M A Stepp ◽  
L Zhu ◽  
D Sheppard ◽  
R L Cranfill

A recently characterized integrin alpha-chain, alpha 9, forms heterodimers with the integrin beta 1-chain and is present in the skin with a distribution similar to that of alpha 2 and alpha 3, other beta 1 integrins. To determine whether alpha 9 is expressed in the stratified squamous epithelium of the cornea, we used immunohistochemical techniques to compare the distribution of alpha 9 in the adult mouse cornea with that of alpha 3. Abundant alpha 9 was expressed in the lateral and basal membranes of the basal cells of the conjunctiva and corneal limbus, but very little alpha 9 was present in the basal cells of the central corneal epithelium. In contrast, alpha 3 was present in the membranes of basal cells of the conjunctiva, limbus, and central cornea. To determine when during postnatal maturation of the corneal epithelium alpha 9 becomes restricted to the limbus, we looked at the distribution of alpha 9 and alpha 3 in the developing mouse eye from birth to eyelid opening. At birth, the basal cells of the cornea and developing limbal region did not express alpha 9, but there was abundant alpha 9 expressed in suprabasal cells between the fused lids and in the basal cells of the skin and conjunctiva. In contrast, alpha 3, integrin was expressed uniformly in the basal cells across the surface of the conjunctiva, limbus, and cornea and was present only in the basal cells of the epithelium between the fused eyelids. In the central cornea, alpha 9 expression increased in basal cells up until Day 10 after birth. After Day 10, alpha 9 expression in the central cornea began to decrease; after the lids were open, alpha 9 expression in the central cornea became restricted to the limbus. In the basal and suprabasal cells between the fused eyelids expression of alpha 9 became increasingly restricted over time to the basal cells. Recent data suggest that alpha 9 beta 1 can interact with tenascin. Our dual labeling confocal microscopy studies indicate that localization of alpha 9 and tenascin are not coordinated in the developing mouse cornea. Many recent studies have shown an important role for beta 1 integrins in mediating epithelial cell differentiation in vitro; in vivo, changes in integrin expression have been found in wound healing, psoriasis, and in basal and squamous cell carcinomas.(ABSTRACT TRUNCATED AT 400 WORDS)


2015 ◽  
Vol 7 (10) ◽  
pp. 1253-1264 ◽  
Author(s):  
Adrian R. Noppe ◽  
Anthony P. Roberts ◽  
Alpha S. Yap ◽  
Guillermo A. Gomez ◽  
Zoltan Neufeld

We use a two-dimensional cellular Potts model to represent the behavior of an epithelial cell layer and describe its dynamics in response to a microscopic wound.


Sign in / Sign up

Export Citation Format

Share Document