Electro-discharge Machining (EDM) of Superalloy Inconel 718 Using Triangular Cross-Sectioned Copper Tool Electrode: Emphasis on Topography and Metallurgical Characteristics of the EDMed Work Surface

Author(s):  
Thrinadh Jadam ◽  
Rahul ◽  
Saurav Datta ◽  
Siba Sankar Mahapatra
Author(s):  
Dileep Kumar Mishra ◽  
▪ Rahul ◽  
Saurav Datta ◽  
Manoj Masanta ◽  
Siba Sankar Mahapatra

A case experimental research on through hole making process on Inconel 625 super alloy by using hollow (tubular) copper tool electrode in electro-discharge machining has been delineated herein. Based on three controllable process variables namely peak discharge current, pulse-on duration, and gap voltage, experiments on through hole making have been carried out following the electro-discharge machining route (die-sinking electro-discharge machining without flushing). In addition to surface morphology, topographical features of the electro-discharge machined work surface have been examined for both internal cylindrical surface of the hole produced and also the external peripheral surface of the removed cylindrical part. The influence of the process parameters have been analyzed on various process performance features like material removal rate, surface roughness, surface crack density, white layer thickness, circularity, radial overcut, and hole taper. An optimal parameter setting has been identified for sound hole making and thereby to improve electro-discharge machining performance. Additionally, energy-dispersive X-ray spectroscopic analysis has been carried out to investigate the extent of carbon enrichment onto the electro-discharge machined work surface of Inconel 625 as affected by the pyrolysis of the dielectric fluid whilst executing electro-discharge machining operation. X-ray diffraction tests have been carried out to compare metallurgy of the electro-discharge machined work surface (various phases/precipitates present in bulk of the matrix material, extent of grain refinement, crystallite size, strain, and dislocation density) with respect to that of “as received” Inconel 625. Results, thus obtained, have also been compared to that of the micro-hardness test data.


Author(s):  
Santosh Kumar Sahu ◽  
Saurav Datta

Inconel 718 is a nickel-based super alloy widely applied in aerospace, automotive, and defense industries. Low thermal conductivity, extreme high temperature strength, strong work-hardening tendency make the alloy difficult-to-cut. In contrast to traditional machining, nonconventional route like electro-discharge machining is relatively more advantageous to machine this alloy. However, low thermal conductivity of Inconel 718 restricts electro-discharge machining from performing well. In order to improve the electro-discharge machining performance of Inconel 718, powder-mixed electro-discharge machining was reported in this paper. It was carried out by adding graphite powder to the dielectric media in consideration with varied peak discharge current. The morphology and topographical features of the machined surface including surface roughness, crack density, white layer thickness, metallurgical aspects (phase transformation, crystallite size, microstrain, and dislocation density), material migration, residual stress, microindentation hardness, etc. were studied and compared with that of the conventional electro-discharge machining. Additionally, effects of peak discharge current were discussed on influencing different performance measures of powder-mixed electro-discharge machining. Material removal efficiency and tool wear rate were also examined. Use of graphite powder-mixed electro-discharge machining was found to be better in performance for improved material removal rate, superior surface finish, reduced tool wear rate, and reduced intensity as well as severity of surface cracking. Lesser extent of carbon migration onto the machined surface as observed in powder-mixed electro-discharge machining in turn reduced the formation of hard carbide layers. As compared to the conventional electro-discharge machining, graphite powder-mixed electro-discharge machining exhibited relatively less microhardness and residual stress at the machined surface.


2019 ◽  
Vol 969 ◽  
pp. 644-649
Author(s):  
Rakesh Kumar ◽  
Anand Pandey ◽  
Pooja Sharma

Inconel-718 is a nickel based super alloy (difficult-to-cut material) used in aerospace industry. Analysis of machining performances viz. Over Cut (OC) & Surface Roughness (SR) for Inconel-718 through rotary Cu-pin tool electrode have been carried out. Peak current (Ip), pulse-on time (Ton), tool rotation (Nt) & hole depth (h) were used as input factors in Electrical Discharge Drilling (EDD) of Inconel-718 work-piece. Effect of input parameters on performance characteristics like OC & SR were found by Taguchi’s L9 (34) orthogonal array. It is reveals that Ip & h are most affecting factors that affects OC & SR. The Scanning Electron Microscope image was used to measure diameter of hole on work-piece after machining.


2020 ◽  
Vol 833 ◽  
pp. 48-53
Author(s):  
Rahul Davis ◽  
Abhishek Singh ◽  
Sabindra Kachhap ◽  
Neeraj Nath

In recent times, aerospace, chemical industries and nuclear plant have usually used Inconel 718 alloy because of its excellent mechanical and chemical properties at elevated temperatures. It falls under the category of difficult-to-cut materials due to its high toughness, poor thermal conductivity and high hardness. The set-ups for electric discharge drilling (EDD) and powder-mixed electric discharge drilling (PM-EDD) were developed, and experiments were conducted on them separately. This research shows a comparative study amid producing holes by EDD and PM-EDD in Inconel 718 alloy workpiece with copper tool electrode. SiC was used as an abrasive powder because of its better thermal conductivity in order to get properly mixed with dielectric in a separate tank. Output response was assessed in the form of material removal rate, under the influence of discharge current, duty factor, pulse-on-time and tool speed, as the input parameters.


Sign in / Sign up

Export Citation Format

Share Document