scholarly journals Neutron stars in general relativity and scalar-tensor theory of gravity

2019 ◽  
Vol 8 (4) ◽  
pp. 293-304
Author(s):  
Farrukh J. Fattoyev
Author(s):  
L. Sh. Grigorian ◽  
H. F. Khachatryan ◽  
A. A. Saharian

Models of static spherically-symmetric stellar configurations are discussed within the framework of the Bimetric scalar-tensor theory of gravity. The latter, in addition to the metric tensor and the scalar field, contains a background metric tensor as an absolute variable of the theory. The simplest variant of the theory with a constant coupling parameter and with a zero cosmological function is considered. The analysis includes both the white dwarfs and neutron stars. It is shown that, depending on the value of the theory parameter, the corresponding masses can be notably larger than those in general relativity.


2014 ◽  
Vol 90 (12) ◽  
Author(s):  
Hector O. Silva ◽  
Hajime Sotani ◽  
Emanuele Berti ◽  
Michael Horbatsch

2014 ◽  
Vol 89 (8) ◽  
Author(s):  
Masaru Shibata ◽  
Keisuke Taniguchi ◽  
Hirotada Okawa ◽  
Alessandra Buonanno

2015 ◽  
Vol 32 (14) ◽  
pp. 145008 ◽  
Author(s):  
Hector O Silva ◽  
Caio F B Macedo ◽  
Emanuele Berti ◽  
Luís C B Crispino

2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Nayem Sk ◽  
Abhik Kumar Sanyal

It has been shown earlier that Noether symmetry does not admit a form of corresponding to an action in which is coupled to scalar-tensor theory of gravity or even for pure theory of gravity taking anisotropic model into account. Here, we prove that theory of gravity does not admit Noether symmetry even if it is coupled to tachyonic field and considering a gauge in addition. To handle such a theory, a general conserved current has been constructed under a condition which decouples higher-order curvature part from the field part. This condition, in principle, solves for the scale-factor independently. Thus, cosmological evolution remains independent of the form of the chosen field, whether it is a scalar or a tachyon.


2004 ◽  
Vol 13 (02) ◽  
pp. 359-371 ◽  
Author(s):  
GIUSEPPE BASINI ◽  
MARCO RICCI ◽  
FULVIO BONGIORNO ◽  
SALVATORE CAPOZZIELLO

We investigate the weak-field limit of scalar-tensor theory of gravity and show that results are directly depending on the coupling and self-interaction potential of the scalar field. In particular, corrections are derived for the Newtonian potential. We discuss astrophysical applications of the results, in particular the flat rotation curves of spiral galaxies.


1977 ◽  
Vol 30 (1) ◽  
pp. 109 ◽  
Author(s):  
DRK Reddy

Plane symmetric solutions of a scalar-tensor theory proposed by Dunn have been obtained. These solutions are observed to be similar to the plane symmetric solutions of the field equations corresponding to zero mass scalar fields obtained by Patel. It is found that the empty space-times of general relativity discussed by Taub and by Bera are obtained as special cases.


2018 ◽  
Vol 2018 (5) ◽  
Author(s):  
Ranajit Mandal ◽  
Chandramouli Sarkar ◽  
Abhik Kumar Sanyal

2017 ◽  
Vol 32 (34) ◽  
pp. 1750183 ◽  
Author(s):  
Mustafa Salti ◽  
Oktay Aydogdu ◽  
Hilmi Yanar ◽  
Figen Binbay

The teleparallel alternative of general relativity which is based on torsion instead of curvature is considered as the gravitational sector to explore the dark universe. Inspired from the well-known Brans–Dicke gravity, here, we introduce a new proposal for the galactic dark energy effect. The new model includes a scalar field with self-interacting potential and a non-minimal coupling between the gravity and scalar field. Additionally, we analyze the idea via the Noether symmetry approach and thermodynamics.


Sign in / Sign up

Export Citation Format

Share Document