scholarly journals Seismic response of a full-scale wind turbine tower using experimental and numerical modal analysis

2016 ◽  
Vol 8 (4) ◽  
pp. 337-349 ◽  
Author(s):  
Kamel Sayed Ahmad Kandil ◽  
Ghada N. Saudi ◽  
Boshra Aboul-Anen Eltaly ◽  
Mostafa Mahmoud Abo El-khier
2019 ◽  
Vol 180 ◽  
pp. 29-39 ◽  
Author(s):  
Ruifu Zhang ◽  
Zhipeng Zhao ◽  
Kaoshan Dai

2013 ◽  
Vol 446-447 ◽  
pp. 733-737
Author(s):  
Chi Chen ◽  
Hao Yuan Chen ◽  
Tian Lu

In this paper, a 1.5 MW wind turbine tower in Dali, Yunnan Province is used as the research object, using large-scale finite element software Ansys to carry on the dynamic analysis. These natural frequencies and natural vibration type of the first five of tower are obtained by modal analysis and are compared with natural frequency to determine whether the resonance occurs. Based on the modal analysis, the results of the transient dynamic analysis are obtained from the tower, which is loaded by the static wind load and fluctuating wind load in two different forms. By comparing the different results, it provides the basis for the dynamic design of wind turbine tower.


2013 ◽  
Vol 712-715 ◽  
pp. 1494-1500
Author(s):  
Bi Feng Cao ◽  
Hui Yu

The paper uses the finite element software ANSYS to establish a 1.5 MW horizontal-axis wind turbine tower model as an example and works on the modal analysis. The modal analysis takes into account the totalmass of wind rotor and nacelle and assumes the bottom of the wind turbine tower is fully constrained. The result shows that the natural frequency of the 1.5MW wind turbine tower is not coincident with the excitation frequency of the wind turbine, and the wind turbine can operate stably at the design condition.


2014 ◽  
Vol 971-973 ◽  
pp. 958-961
Author(s):  
Yong Zhi Xie ◽  
An Le Mu

This paper uses Isight_FD 5.6 to integrate UG8.0 parametric modeling, ANSYS Workbench static analysis, modal analysis, and mathematical modeling of design optimization, by means of optimization algorithm, to meet strength and the stiffness of the tower, to realize the optimization of tower structure, so as to attain the expected target which reduces the weight of tower.


Author(s):  
Andrew C. Young ◽  
Steve Hettick ◽  
Habib J. Dagher ◽  
Anthony M. Viselli ◽  
Andrew J. Goupee

In May of 2013 the VolturnUS 1:8 floating semi-submersible wind turbine was successfully deployed off the coast of Castine, Maine, making the unit the first grid connected offshore turbine in the United States. The VolturnUS 1:8 structure features a 20 kW turbine, a post-tensioned and reinforced concrete semi-submersible base and a fiber reinforced plastic (FRP) tower (E-glass and polyester resin). The VolturnUS 1:8 structure is a geometrically 1:8-scale of a 6 MW floating turbine design and is used to demonstrate the feasibility of both the concrete base and FRP tower and validate the performance of the structure in a scaled environment. Data collected from the deployed 1:8-scale structure will be used for modeling and simulating the behavior of the system at full-scale. The effort was led by the University of Maine’s Advanced Structures and Composites Center (UMaine) and a consortium of industry partners, including FRP manufacturer Ershigs, Inc. An overview of the process and methodology used in the analysis, design and testing of the 1:8 scale FRP floating wind turbine tower is presented. The use of an FRP tower on a floating wind turbine platform offers the benefits of reduced tower mass and maintenance requirements and has the potential to further reduce hull mass by lowering the global center of gravity of the structure. An FRP tower for use on the UMaine semi-submersible concrete VolturnUS 1:8 platform was developed that meets all strength and serviceability criteria and is robust enough to withstand the loading from both wind and waves. An overview of the tower loads analysis and FAST modeling, tower structural design, structural proof testing and preliminary analysis of performance are presented. The VolturnUS 1:8 wind turbine tower is the first time FRP materials have been used in an offshore wind tower application. Further, the methodologies and procedures that were developed in the design of the pilot-scale tower are directly applicable to the design and analysis of composite wind turbine towers at the full-scale level. These “lessons learned” are already in use as Ershigs and UMaine work to design a full-scale composite tower over 80 meters tall for use on the VolturnUS platform with a 6MW wind turbine. The results of the 1:8-scale program demonstrate the successful use of an FRP wind turbine tower on a floating platform and highlights the potential for the use of an FRP tower at the full-scale (6 MW) level.


2015 ◽  
Vol 744-746 ◽  
pp. 179-182
Author(s):  
Hong Zhu Shan ◽  
Zhen Hua Liu

For the low power wind turbine, the tower and the generator unit is easy to produce resonance, which will result in bigger amplitude. In this paper, as an example, the authors establish a finite element model for modal analysis by a 55kw direct-drive permanent-magnet generator, to confirm its inherent frequency and vibration mode. Horizontal amplitude on the top of the tower can be received under different external excitation frequency. The results correspond to the codes very well and can provide effective reference data for the design of the wind turbine tower.


Sign in / Sign up

Export Citation Format

Share Document