The Finite Element Analysis and Comparison of Wind Turbine Tower under Static Wind Load and Fluctuating Wind Load

2013 ◽  
Vol 446-447 ◽  
pp. 733-737
Author(s):  
Chi Chen ◽  
Hao Yuan Chen ◽  
Tian Lu

In this paper, a 1.5 MW wind turbine tower in Dali, Yunnan Province is used as the research object, using large-scale finite element software Ansys to carry on the dynamic analysis. These natural frequencies and natural vibration type of the first five of tower are obtained by modal analysis and are compared with natural frequency to determine whether the resonance occurs. Based on the modal analysis, the results of the transient dynamic analysis are obtained from the tower, which is loaded by the static wind load and fluctuating wind load in two different forms. By comparing the different results, it provides the basis for the dynamic design of wind turbine tower.

2013 ◽  
Vol 712-715 ◽  
pp. 1494-1500
Author(s):  
Bi Feng Cao ◽  
Hui Yu

The paper uses the finite element software ANSYS to establish a 1.5 MW horizontal-axis wind turbine tower model as an example and works on the modal analysis. The modal analysis takes into account the totalmass of wind rotor and nacelle and assumes the bottom of the wind turbine tower is fully constrained. The result shows that the natural frequency of the 1.5MW wind turbine tower is not coincident with the excitation frequency of the wind turbine, and the wind turbine can operate stably at the design condition.


2014 ◽  
Vol 680 ◽  
pp. 551-556
Author(s):  
Wei Kong ◽  
Hong Liang Wang ◽  
Ying Cai

In order to save the steel consumption,ensure the better economy of wind turbine tower,this paper designeda new concrete filled double skin steel tube for wind turbine tower,based on the parameters of 1. 5 MW wind turbine tower.A three-dimensional finite element model of wind turbine tower was built by using the finite element software ANSYS,then the static strength analysis and modal analysis were carried out,in which the stress and displacement at the top of the tower were calculated under three kinds of working conditions: normal operation with rated wind speed,normal operation with cutout wind speed and shutdown under extreme wind conditions,the natural frequency and mode shapes of the tower were obtained as well. The results show that the tower does not resonate with blades,and its structure can meet the strength and stiffness requirements of engineering.


2019 ◽  
Vol 44 (1) ◽  
pp. 49-59
Author(s):  
Nilesh Chandgude ◽  
Nitin Gadhave ◽  
Ganesh Taware ◽  
Nitin Patil

In this article, three small wind turbine blades of different materials were manufactured. Finite element analysis was carried out using finite element software ANSYS 14.5 on modeled blades of National Advisory Committee for Aeronautics 4412 airfoil profile. From finite element analysis, first, two flap-wise natural frequencies and mode shapes of three different blades are obtained. Experimental vibration analysis of manufactured blades was carried out using fast Fourier transform analyzer to find the first two flap-wise natural frequencies. Finally, the results obtained from the finite element analysis and experimental test of three blades are compared. Based on vibration analysis, we found that the natural frequency of glass fiber reinforced plastic blade reinforced with aluminum sheet metal (small) strips increases compared with the remaining blades. An increase in the natural frequency indicates an increase in the stiffness of blade.


2013 ◽  
Vol 385-386 ◽  
pp. 192-195
Author(s):  
Dong Sheng Zhang ◽  
Jian Jun Zhang

As the less-teeth gear has the less-teeth, the bigger helix angle and the more contact ratio etc. The research of dynamic meshing characteristics makes focus, and modal analysis is the basis of dynamic analysis. In order to get the modal analysis characteristics: firstly the parametric solid modeling is realized through the software of MATLAB and PRO/E; secondly multistage inherent frequencies and mode shapes are achieved by the finite element software of ANSYS Workbench.


2011 ◽  
Vol 368-373 ◽  
pp. 1595-1599
Author(s):  
Xiu Li Wang ◽  
Jun Jie Li

The numerical simulation calculation on round steel-tubes reinforced with CFRP sheets was done through the large-scale finite element software ANSYS. In this research, four factors were comparatively analyzed so as to obtain the influence of them on ultimate axial tensile bearing capacity of steel-tubes. These four factors are longitudinal reinforcement length rate , thickness , elastic modulus and circumferential reinforcement ways of CFRP sheets. The results show that the ultimate axial tensile bearing capacity of steel-tubes strengthened with CFRP sheets is enhanced significantly and the reinforcement effect is very good.


2012 ◽  
Vol 591-593 ◽  
pp. 728-732
Author(s):  
Rong Zhang

This paper uses non-linear finite element method to structurally analyze top flanged joint system of a MW wind turbine, sets up a finite element model of top flanged joint system by applying finite element analysis software MSC.Marc/Mentat, makes an analysis on the stress distribution of key components of top flanged joint system under ultimate operating mode based on applying appropriate boundary condition and loads, and carries out security examination on top flange and joint bolt. Result shows that key components of the top flanged joint system can satisfy design requirements, and it has a guiding role for rational design and performance improvement of large scale wind turbine flange, which can be used in structural analysis of other flanged joint systems, and has certain practical value in the aspect of engineering.


Author(s):  
Manas Metar

Abstract: The Federation Internationale de L’Autobile (FIA) has been working on improving safety of drivers in open wheel racing series. Numerous incidents caused serious impacts on drivers’ lives. The car-to-car collision, car to environment collision and injuries due to flying debris are common threats to these drivers. In 2016 the introduction of Halo surrounding the cockpit was appreciated by the FIA. The following study includes the analysis of this Halo system using Finite Element Analysis (FEA). The dynamic, static and modal analysis is carried out with the help of Simscale software and the results obtained showed the values under permissible levels. Keywords: Finite Element Analysis, Static Analysis, Modal Analysis, Dynamic Analysis, F1 Halo, FIA.


2014 ◽  
Vol 1033-1034 ◽  
pp. 970-977
Author(s):  
Xiao Feng Yang ◽  
Hua Yang Liang ◽  
Okumura Ummin ◽  
Mu Yang

The application of new polymer materials in modern agriculture is considered and discussed in a completely new view in this paper. Combined with modern agricultural characteristics: out of season and large-scale planting, the excellent characteristics of modern polymeric materials are skillfully applied to modern agriculture greenhouse rack, which solves many defects of the traditional greenhouse frame structure material. This paper takes Hainan Province as the area of greenhouse structure research and analyze the shed load in the view of structural analysis, based on which the finite element software ABAQUS for the greenhouse framework structure are analyzed by finite element analysis. The results show that the stress and deformation results can satisfy the requirements of structural strength in the normal load conditions.


Author(s):  
Xiuli Wang ◽  
Yonghong Ran ◽  
Huvue Zhang ◽  
Yanpeng Zhu

The wind-induced performance response of large-span truss curved roofs is extremely complex and changes obviously under wind load. This paper has taken the large-span steel roof of Liu Zhaike highway toll station as an example to analyze by both numerical simulations and field tests of responses of the steel canopy under wind load. In this case, simulated analysis results using finite element software were calibrated and verified by the field test results. In addition, a new method of large structure field testing was proposed which obtained the internal force and displacement of the canopy structure. Moreover, this paper analyzed and determined the actual stress state of the rectangular pipe truss. Finally, the safety condition of the roof was evaluated based on the monitoring data and the simulation of the finite element model. And the analysis methods provides references for similar engineering field tests, as well as guidance for the operation and maintenance for this project.


2012 ◽  
Vol 252 ◽  
pp. 158-161
Author(s):  
Hai Ying Li ◽  
Hua Liang Wu ◽  
Xiao Hong Chen ◽  
Sheng Jian Xie

By using finite element software, the paper establishes the steelwork analysis model of the small capacity and economic mechanical parking system and provides the modal analysis of steelwork in both cases of no-load and full load. In this paper, it provides a theoretical basis for the design of mechanical parking system steelwork.


Sign in / Sign up

Export Citation Format

Share Document