scholarly journals Microstructural Depictions of Austenite Dynamic Recrystallization in a Low-Carbon Steel: A Cellular Automaton Model

2016 ◽  
Vol 29 (12) ◽  
pp. 1127-1135 ◽  
Author(s):  
Xuan Ma ◽  
Cheng-Wu Zheng ◽  
Xing-Guo Zhang ◽  
Dian-Zhong Li
2004 ◽  
Vol 19 (10) ◽  
pp. 2877-2886 ◽  
Author(s):  
Y.J. Lan ◽  
D.Z. Li ◽  
Y.Y. Li

Austenite–ferrite transformation at different isothermal temperatures in low carbon steel was investigated by a two-dimensional cellular automaton approach, which provides a simple solution for the difficult moving boundary problem that governs the ferrite grain growth. In this paper, a classical model for ferrite nucleation at austenite grain boundaries is adopted, and the kinetics of ferrite grain growth is numerically resolved by coupling carbon diffusion process in austenite and austenite–ferrite (γ–α) interface dynamics. The simulated morphology of ferrite grains shows that the γ–α interface is stable. In this cellular automaton model, the γ–α interface mobility and carbon diffusion rate at austenite grain boundaries are assumed to be higher than those in austenite grain interiors. This has influence on the morphology of ferrite grains. Finally, the modeled ferrite transformation kinetics at different isothermal temperatures is compared with the experiments in the literature and the grid size effects of simulated results are investigated by changing the cell length of cellular automaton model in a set of calculations.


2005 ◽  
Vol 475-479 ◽  
pp. 165-168 ◽  
Author(s):  
Ping Yang ◽  
Wang Yue Yang ◽  
Zu Qing Sun

Texture evolutions are determined by XRD and EBSD techniques during ferrite refinement through deformation-enhanced ferrite transformation (DEFT) and dynamic recrystallization (DREX). Evidences of transformation texture, deformation texture and recrystallization texture during DEFT are provided and compared with the texture during DREX. The influence of pass-interval during DEFT on texture is illustrated. Results are discussed in terms of the influences of ferrite grain size and deforming temperature.


Author(s):  
Itsuki Yamaguchi ◽  
Mitsuharu Yonemura

AbstractThe recovery and recrystallization behaviors of the high-temperature γ-phase of carbon steel during deformation strongly affect the mechanical properties of steel. However, it is difficult to evaluate such behaviors at a high temperature. This study proposes the deformation behavior of the high-temperature γ-phase of low-carbon steel based on the quantitative observation of dislocation density and vacancies in the Ni–30 mass pct Fe alloy. This alloy was used because its stacking fault energy (60 to 70 mJ m-2) is similar to that of low-carbon steel. Uniaxial compression tests were conducted at a strain rate of 10−3 s−1 and 1473 K (1200 °C) for dynamic recrystallization and at 293 K (20 °C) for work hardening. The compression process was interrupted at different strain values to systematically investigate microstructural changes. The changes in work hardening, recovery, and recrystallization behaviors were obtained from the true stress–true strain curves of the uniaxial compression tests. Further, the microstructure changes during cold and hot uniaxial compression were investigated from the viewpoint of lattice defects by X-ray diffraction, positron annihilation analysis, transmission electron microscopy, and electron backscatter diffraction to comprehend the work hardening, dynamic recovery (DRV), and dynamic recrystallization (DRX). This study helps understand the DRV, DRX, and work hardening behaviors in the γ-phase of the Ni–30 mass pct Fe alloy during cold and hot compression.


Sign in / Sign up

Export Citation Format

Share Document