Biomimetic fabrication of polymer film with high adhesive superhydrophobicity by duplicating locust wing surface

2015 ◽  
Vol 31 (5) ◽  
pp. 895-898 ◽  
Author(s):  
Gang Sun ◽  
Yan Fang ◽  
Heng Zhi ◽  
Zhengwen Li
2015 ◽  
Vol 1089 ◽  
pp. 181-184
Author(s):  
Gang Sun ◽  
Yan Fang

The microstructure, hydrophobicity and chemical composition of the butterfly and locust wing surfaces were investigated by a scanning electron microscope (SEM), a contact angle meter and a Fourier transform infrared spectrometer (FT-IR). The hydrophobicity models were established on the basis of the Cassie equation. The wetting mechanism was comparatively discussed from the perspective of biological coupling. The butterfly and the locust wing surfaces are composed of naturally hydrophobic materials, but exhibit different complex wettability. The butterfly wing surface is of low adhesion (sliding angle 1~3°) and superhydrophobicity (contact angle 151.6~156.9°), while the locust wing surface is of extremely high adhesion (sliding angle>180°) and superhydrophobicity (contact angle 155.8~157.3°). The complex wettability of the wing surfaces ascribes to the coupling effect of hydrophobic material and rough structure. The butterfly and locust wings can be used as bio-templates for design and preparation of biomimetic functional surface, intelligent interfacial material and no-loss microfluidic transport channels.


2015 ◽  
Vol 1089 ◽  
pp. 190-193
Author(s):  
Gang Sun ◽  
Yan Fang

The complex wettability, chemical composition and microstructure of locust wing surface were investigated by a video-based contact angle (CA) meter, a Fourier transform infrared spectrometer (FT-IR) and a scanning electron microscope (SEM). A model for hydrophobicity of wing surface was established on the basis of Cassie equation. The wetting mechanism was discussed from the perspective of biological coupling. The wing surface is a waxy layer composed mainly of long chain hydrocarbon, tallate and fatty-acid alcohol, possesses multiple-dimensional rough microstructures including primary structure (wing vein grids), secondary structure (regularly arraying micrometric pillar gibbosities), and tertiary structure (nanocorrugations). The diameter, height, and spacing of pillar gibbosity are 3.0~10.2 μm, 3.4~9.2 μm, and 7.5~18.5 μm, respectively. Locust wing surface is of high adhesive superhydrophobicity (CA 150.1~157.3°). The complex wettability of the wing surface ascribes to coupling effect of material element (waxy crystal) and structural element (hierarchical rough microstructure). Locust wing can be potentially used as a biomimetic template for design of special functional surface. This work may bring insights for preparation of micro-controllable superhydrophobic surface and no-loss microfluidic channels.


2020 ◽  
Vol 35 (23-24) ◽  
pp. 3210-3221
Author(s):  
Kai Huang ◽  
Qi Cheng ◽  
Honglei Zhang ◽  
Ligang Lin ◽  
Qiying Wang

Abstract


2003 ◽  
Vol 778 ◽  
Author(s):  
Rajdip Bandyopadhyaya ◽  
Weizhi Rong ◽  
Yong J. Suh ◽  
Sheldon K. Friedlander

AbstractCarbon black in the form of nanoparticle chains is used as a reinforcing filler in elastomers. However, the dynamics of the filler particles under tension and their role in the improvement of the mechanical properties of rubber are not well understood. We have studied experimentally the dynamics of isolated nanoparticle chain aggregates (NCAs) of carbon made by laser ablation, and also that of carbon black embedded in a polymer film. In situ studies of stretching and contraction of such chains in the transmission electron microscope (TEM) were conducted under different maximum values of strain. Stretching causes initially folded NCA to reorganize into a straight, taut configuration. Further stretching leads to either plastic deformation and breakage (at 37.4% strain) or to a partial elastic behavior of the chain at small strains (e.g. 2.3% strain). For all cases the chains were very flexible under tension. Similar reorientation and stretching was observed for carbon black chains embedded in a polymer film. Such flexible and elastic nature of NCAs point towards a possible mechanism of reinforcement of rubber by carbon black fillers.


Author(s):  
M.P. Danilaev ◽  
◽  
E.A. Bogoslov ◽  
Yu.E. Polsky ◽  
I.V. Yanilkin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document