Disturbance of plateau zokor-made mound stimulates plant community regeneration in the Qinghai-Tibetan Plateau, China

2021 ◽  
Vol 13 (10) ◽  
pp. 1054-1070
Author(s):  
Zeyu Xiang ◽  
Arvind Bhatt ◽  
Zhongbin Tang ◽  
Yansong Peng ◽  
Weifeng Wu ◽  
...  
2020 ◽  
Vol 31 (18) ◽  
pp. 2819-2829
Author(s):  
Jiufu Luo ◽  
Li Ma ◽  
Guijing Li ◽  
Dongzhou Deng ◽  
Dechao Chen ◽  
...  

2015 ◽  
Vol 37 (4) ◽  
pp. 389 ◽  
Author(s):  
Hasbagan Ganjurjav ◽  
Min-jie Duan ◽  
Yun-fan Wan ◽  
Wei-na Zhang ◽  
Qing-zhu Gao ◽  
...  

Grazing by large herbivores may have a strong impact on plant diversity and productivity, but the effects are expected to vary with grazing pressure. The changes in productivity and species diversity of Stipa purpurea-dominated semi-arid alpine steppe grassland were measured under four different stocking rates of Tibetan sheep [no grazing, light (2.4 sheep units ha–1), moderate (3.6 sheep units ha–1), and heavy (6.0 sheep units ha–1) grazing] in a 5-year (2006–2010) grazing experiment on the Qinghai-Tibetan Plateau, China. Herbage mass and aboveground net primary productivity of alpine steppe declined significantly with increasing stocking rate (P < 0.05). Over the 5 years of the experiment, the proportion of forbs and sedges increased significantly under light and moderate grazing; the proportion of grasses decreased significantly, whereas the proportion of S. purpurea did not change compared with the no grazing treatment. Species diversity was highest under moderate grazing and was significantly higher than the no grazing treatment in 2 years (2008 and 2010). Moderate grazing enhanced the species diversity of the plant community due to an increase in the proportion of forbs. There were significant positive linear correlations between herbage mass and species diversity under no and light grazing. Species diversity was not related to productivity under moderate and heavy grazing. In conclusion, grazing by sheep reduced plant productivity; plant diversity increased under low and moderate grazing, and was as a result of changes in the composition of the plant community of a semi-arid alpine steppe.


2021 ◽  
Vol 12 ◽  
Author(s):  
Chengyang Li ◽  
Chimin Lai ◽  
Fei Peng ◽  
Xian Xue ◽  
Quangang You ◽  
...  

Ecosystem stability characterizes ecosystem responses to natural and anthropogenic disturbance and affects the feedback between ecosystem and climate. A 9-year warming experiment (2010–2018) was conducted to examine how climatic warming and its interaction with the soil moisture condition impact the temporal stability of plant community aboveground biomass (AGB) of an alpine meadow in the central Qinghai-Tibetan Plateau (QTP). Under a warming environment, the AGB percentage of grasses and forbs significantly increased but that of sedges decreased regardless of the soil water availability in the experimental plots. The warming effects on plant AGB varied with annual precipitation. In the dry condition, the AGB showed no significant change under warming in the normal and relatively wet years, but it significantly decreased in relatively drought years (16% in 2013 and 12% in 2015). In the wet condition, the AGB showed no significant change under warming in the normal and relatively drought years, while it significantly increased in relatively wet years (12% in 2018). Warming significantly decreased the temporal stability of AGB of plant community and sedges. Species richness remained stable even under the warming treatment in both the dry and wet conditions. The temporal stability of AGB of sedges (dominant plant functional group) explained 66.69% variance of the temporal stability of plant community AGB. Our findings highlight that the temporal stability of plant community AGB is largely regulated by the dominant plant functional group of alpine meadow that has a relatively low species diversity.


2015 ◽  
Vol 35 (23) ◽  
Author(s):  
雒明伟 LUO Mingwei ◽  
毛亮 MAO Liang ◽  
李倩倩 LI Qianqian ◽  
赵旭 ZHAO Xu ◽  
肖玉 XIAO Yu ◽  
...  

2017 ◽  
Vol 78 ◽  
pp. 7-16 ◽  
Author(s):  
Jing Hu ◽  
GuoRong Chen ◽  
Wail M. Hassan ◽  
Han Chen ◽  
Junyong Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document