aboveground net primary productivity
Recently Published Documents


TOTAL DOCUMENTS

84
(FIVE YEARS 21)

H-INDEX

20
(FIVE YEARS 1)

2022 ◽  
Vol 12 ◽  
Author(s):  
Jiangwei Wang ◽  
Meng Li ◽  
Chengqun Yu ◽  
Gang Fu

More and more studies have focused on responses of ecosystem carbon cycling to climate change and phenological change, and aboveground net primary productivity (ANPP) is a primary component of global carbon cycling. However, it remains unclear whether the climate change or the phenological change has stronger effects on ANPP. In this study, we compared the effects of phenological change and climate change on ANPP during 2000–2013 across 36 alpine grassland sites on the Tibetan Plateau. Our results indicated that ANPP showed a positive relationship with plant phenology such as prolonged length of growing season and advanced start of growing season, and environmental variables such as growing season precipitation (GSP), actual vapor pressure (Ea), relative humidity (RH), and the ratio of GSP to ≥5°C accumulated temperature (GSP/AccT), respectively. The linear change trend of ANPP increased with that of GSP, Ea, RH, and GSP/AccT rather than phenology variables. Interestingly, GSP had the closer correlation with ANPP and meanwhile the linear slope of GSP had the closer correlation with that of ANPP among all the concerned variables. Therefore, climate change, mainly attributed to precipitation change, had a stronger effect on ANPP than did phenological change in alpine grasslands on the Tibetan Plateau.


2021 ◽  
Author(s):  
Changchun Song ◽  
Yuqiu Zhang ◽  
Zhengru Ren ◽  
Haining Lu ◽  
Xu Chen ◽  
...  

Abstract PurposeNitrogen (N) enrichment through either artificial N application or atmospheric N deposition often increases ecosystem aboveground net primary productivity (ANPP). Therefore, results from N addition experiments have been used to assess the effects of atmospheric N deposition on ecosystems. However, the frequency of atmospheric N deposition is higher than that of artificial N addition. Whether the frequency of N addition alters the long-term response of ecosystem ANPP remains unclear. MethodsWe conducted a N addition frequency experiment from 2010 in a temperate grassland, northern China. Plant community ANPP was collected in 2019 and 2020, and soil physicochemical properties were measured in 2020. ResultsPlant community ANPP was significantly enhanced by N addition, whereas these increments declined with the frequency of N addition. The responses of the grasses ANPP to the frequency of N addition were similar to those of the plant community ANPP. Forbs ANPP was not significantly altered by the frequency of N addition. Meanwhile, soil ammonium and nitrate (NO3−–N) concentrations decreased with increasing N addition frequency, while the soil water content (SWC) and pH were similar among the frequencies of N addition. Moreover, SWC and soil NO3−–N jointly promoted grasses ANPP, ultimately increasing the plant community ANPP. ConclusionOur findings extend the water and N co-limitation hypothesis by specifying the preference for NO3−–N in arid/semi-arid regions. This study also illustrates that a higher frequency of N addition is more suitable for assessing the long-term impacts of atmospheric N deposition on ecosystems.


Forests ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1554
Author(s):  
Yongjin Du ◽  
Weiliang Fan ◽  
Jun Wu ◽  
Mengxiang Zheng ◽  
Leixin Wang ◽  
...  

Specific leaf area (SLA) is a good predictor of aboveground net primary productivity. However, the SLA of bamboo species is generally estimated on the basis of destructive measurements rather than the cost-effective and recyclable nondestructive measurements using easily accessible leaf traits such as leaf length (L) and width (W). Considering the strong empirical relationships between leaf area (LA) and leaf structural parameters of bamboo species that were developed by previous studies, this study explores the feasibility of estimating the leaf dry mass (LDM) and SLA of 50 bamboo species using L and W. The results show that the Montgomery equation and its similar forms precisely estimated LA of the 50 bamboo species at both leaf scale (R2 > 0.96 and MAE% < 4.67%) and the canopy scale (R2 > 0.99 and RMSE < 0.09); the LDM of the 50 bamboo species could also be estimated using L and W at both leaf scale (R2 > 0.52 and MAE% < 26.35%) and the canopy scale (R2 > 0.99 and RMSE < 0.003), and the estimated mean SLA of each of the 50 bamboo species had good agreement with the measured values (R2 > 0.99 and RMSE < 1.88) because of the precisely estimated mean LA and mean LDM at the canopy scale, indicating the feasibility of estimating SLA of the 50 bamboo species at the canopy scale based on nondestructive measurements. However, the empirical relationships used for mean SLA estimations are not suitable for SLA estimations at the leaf scale because of the uncertainties in the estimated LDM at the leaf scale.


2021 ◽  
Vol 13 (17) ◽  
pp. 3430
Author(s):  
Julie Wolf ◽  
Min Chen ◽  
Ghassem R. Asrar

Livestock grazing occupies ca. 25% of global ice-free land, removing large quantities of carbon (C) from global rangelands (here, including grass- and shrublands). The proportion of total livestock intake that is supplied by grazing (GP) is estimated at >50%, larger than the proportion from crop- and byproduct-derived fodders. Both rangeland productivity and its consumption through grazing are difficult to quantify, as is grazing intensity (GI), the proportion of annual aboveground net primary productivity (ANPP) removed from rangelands by grazing livestock. We develop national or sub-national level estimates of GI and GP for 2000–2010, using remote sensing products, inventory data, and model simulations, and accounting for recent changes in livestock intake, fodder losses and waste, and national cropland use intensities. Over the 11 study years, multi-model average global rangeland ANPP varied between the values of 13.0 Pg C in 2002 and 13.96 Pg C in 2000. The global requirement for grazing intake increased monotonically by 18%, from 1.54 in 2000 to 1.82 Pg C in 2010. Although total global rangeland ANPP is roughly an order of magnitude larger than grazing demand, much of this total ANPP is unavailable for grazing, and national or sub-national deficits between intake requirements and available rangeland ANPP occurred in each year, totaling 36.6 Tg C (2.4% of total grazing intake requirement) in 2000, and an unprecedented 77.8 Tg C (4.3% of global grazing intake requirement) in 2010. After accounting for these deficits, global average GI ranged from 10.7% in 2000 to 12.6% in 2009 and 2010. The annually increasing grazing deficits suggest that rangelands are under significant pressure to accommodate rising grazing demand. Greater focus on observing, understanding, and managing the role of rangelands in feeding livestock, providing ecosystem services, and as part of the global C cycle, is warranted.


2021 ◽  
Vol 13 (9) ◽  
pp. 4630
Author(s):  
Zheng Zang

Large amounts of blue carbon exist in the ecosystems of coastal wetlands. Accurate calculations of the stocks and economic value of blue carbon in various plant communities can facilitate vegetation rehabilitation. Based on this objective, first, a blue carbon estimation model was constructed by combining a Carnegie-Ames-Stanford Approach (CASA) model, and second, the distribution pattern of blue carbon and flow direction of ecosystem services (carbon sequestration) in a coastal wetland in China was analyzed utilizing a combination of field surveys, remote sensing data, and laboratory analysis techniques. Finally, the wetland carbon sequestration value and its income-expenditure status were measured using the carbon tax method. The results show that the aboveground net primary productivity of coastal wetland vegetation exhibits a non-zonal distribution in the south-north direction, whereas it presented a three-level gradient distribution, characterized as “low (200–300 g/m2∙y)–intermediate (300–400 g/m2∙y)–high (400–500 g/m2∙y)”, in the east-west direction. The accumulation of carbon gradually increased from the ground surface to the underground (litter < underground roots < soil) in Spartina alterniflora and Phragmites australis. On the type scale, Spartina alterniflora and Phragmites australis wetlands were of the “blue carbon” net outflow type (supply type), with mean annual outflow carbon sequestration values of 3272.3 $/ha and 40.9 $/ha, respectively. The Suaeda glauca wetland was of the “blue carbon” net inflow type (benefit type), with a mean annual inflow carbon sequestration value of 190.7 $/ha.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Martin P. Girardin ◽  
Nathalie Isabel ◽  
Xiao Jing Guo ◽  
Manuel Lamothe ◽  
Isabelle Duchesne ◽  
...  

AbstractAssisted gene flow between populations has been proposed as an adaptive forest management strategy that could contribute to the sequestration of carbon. Here we provide an assessment of the mitigation potential of assisted gene flow in 46 populations of the widespread boreal conifer Picea mariana, grown in two 42-year-old common garden experiments and established in contrasting Canadian boreal regions. We use a dendroecological approach taking into account phylogeographic structure to retrospectively analyse population phenotypic variability in annual aboveground net primary productivity (NPP). We compare population NPP phenotypes to detect signals of adaptive variation and/or the presence of phenotypic clines across tree lifespans, and assess genotype‐by‐environment interactions by evaluating climate and NPP relationships. Our results show a positive effect of assisted gene flow for a period of approximately 15 years following planting, after which there was little to no effect. Although not long lasting, well-informed assisted gene flow could accelerate the transition from carbon source to carbon sink after disturbance.


Sign in / Sign up

Export Citation Format

Share Document