scholarly journals Dominant Plant Functional Group Determine the Response of the Temporal Stability of Plant Community Biomass to 9-Year Warming on the Qinghai–Tibetan Plateau

2021 ◽  
Vol 12 ◽  
Author(s):  
Chengyang Li ◽  
Chimin Lai ◽  
Fei Peng ◽  
Xian Xue ◽  
Quangang You ◽  
...  

Ecosystem stability characterizes ecosystem responses to natural and anthropogenic disturbance and affects the feedback between ecosystem and climate. A 9-year warming experiment (2010–2018) was conducted to examine how climatic warming and its interaction with the soil moisture condition impact the temporal stability of plant community aboveground biomass (AGB) of an alpine meadow in the central Qinghai-Tibetan Plateau (QTP). Under a warming environment, the AGB percentage of grasses and forbs significantly increased but that of sedges decreased regardless of the soil water availability in the experimental plots. The warming effects on plant AGB varied with annual precipitation. In the dry condition, the AGB showed no significant change under warming in the normal and relatively wet years, but it significantly decreased in relatively drought years (16% in 2013 and 12% in 2015). In the wet condition, the AGB showed no significant change under warming in the normal and relatively drought years, while it significantly increased in relatively wet years (12% in 2018). Warming significantly decreased the temporal stability of AGB of plant community and sedges. Species richness remained stable even under the warming treatment in both the dry and wet conditions. The temporal stability of AGB of sedges (dominant plant functional group) explained 66.69% variance of the temporal stability of plant community AGB. Our findings highlight that the temporal stability of plant community AGB is largely regulated by the dominant plant functional group of alpine meadow that has a relatively low species diversity.

2021 ◽  
Vol 41 (4) ◽  
Author(s):  
姜林,胡骥,杨振安,詹伟,赵川,朱单,何奕忻,陈槐,彭长辉 JIANG Lin

2014 ◽  
Vol 10 (8) ◽  
pp. 20140291 ◽  
Author(s):  
H. K. Zhou ◽  
B. Q. Yao ◽  
W. X. Xu ◽  
X. Ye ◽  
J. J. Fu ◽  
...  

Worldwide, many plant species are experiencing an earlier onset of spring phenophases due to climate warming. Rapid recent temperature increases on the Tibetan Plateau (TP) have triggered changes in the spring phenology of the local vegetation. However, remote sensing studies of the land surface phenology have reached conflicting interpretations about green-up patterns observed on the TP since the mid-1990s. We investigated this issue using field phenological observations from 1990 to 2006, for 11 dominant plants on the TP at the levels of species, families (Gramineae—grasses and Cyperaceae—sedges) and vegetation communities (alpine meadow and alpine steppe). We found a significant trend of earlier leaf-out dates for one species ( Koeleria cristata ). The leaf-out dates of both Gramineae and Cyperaceae had advanced (the latter significantly, starting an average of 9 days later per year than the former), but the correlation between them was significant. The leaf-out dates of both vegetation communities also advanced, but the pattern was only significant in the alpine meadow. This study provides the first field evidence of advancement in spring leaf phenology on the TP and suggests that the phenology of the alpine steppe can differ from that of the alpine meadow. These findings will be useful for understanding ecosystem responses to climate change and for grassland management on the TP.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zhouwen Ma ◽  
Jing Wu ◽  
Lan Li ◽  
Qingping Zhou ◽  
Fujiang Hou

Litter has been shown to alter the structure and functions of grassland ecosystems, and a knowledge of the effects of litter is essential for understanding the dynamics of ecosystem multifunctionality. However, relatively little is known about the effects of plant litter on ecosystem multifunctionality in alpine meadows. A three-year field experiment was conducted to explore how litter manipulation affects ecosystem multifunctionality. The plant litter treatments that were applied consisted of a range of litter mass levels and three dominant plant species, in an alpine meadow on the Qinghai-Tibet Plateau. The results showed that litter mass manipulation had a negative effect on ecosystem multifunctionality and most individual ecosystem functions (species richness, plant cover, and above-ground biomass) but had a positive effect on plant functional group evenness. In particular, the study found that low or medium amounts of litter (≤200gm−2) were beneficial in maintaining a high level of ecosystem multifunctionality. Furthermore, a structural equation model revealed that ecosystem multifunctionality was driven by indirect effects of litter mass manipulation on plant functional group evenness, plant cover, and species richness. These results suggest that litter-induced effects may be a major factor in determining grassland ecosystem multifunctionality, and they indicate the potential importance of grassland management strategies that regulate the dynamics of litter accumulation.


2004 ◽  
Vol 12 (4) ◽  
pp. 403-409
Author(s):  
LONG Rui-Jun ◽  
Lei Shang ◽  
Yangjin Zhuoga ◽  
Ji Yang ◽  
Bo Li ◽  
...  

2018 ◽  
Vol 29 (9) ◽  
pp. 2920-2931 ◽  
Author(s):  
Jun Wang ◽  
Chunyan Zhang ◽  
Hao Yang ◽  
Chengxiang Mou ◽  
Li Mo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document