scholarly journals Seasonal changes in the water-use strategies of three herbaceous species in a native desert steppe of Ningxia, China

Author(s):  
Haiying Hu ◽  
Lin Zhu ◽  
Huixia Li ◽  
Dongmei Xu ◽  
Yingzhong Xie
2013 ◽  
Vol 89 (02) ◽  
pp. 169-177 ◽  
Author(s):  
Guodong Jia ◽  
Xinxiao Yu ◽  
Wenping Deng

Water sources of woody plants in semi-arid or seasonally dry areas of China are little known. This study investigated the differences in water sources for plants due to seasonal changes (wet/transitional and dry seasons) in semi-arid areas. Stable isotope techniques were applied to determine plant water sources in different seasons. The results show that there is generally a switch of water sources from shallow depths in the rainy season to lower depths in the dry season. This study highlights how seasonal changes in climate in semi-arid China affect plant water uptake and suggests that further study with replicated systematic experiments are needed to better understand the responses in water use patterns to changes in environmental conditions in drought-prone areas.


2013 ◽  
Vol 28 (26) ◽  
pp. 6265-6275 ◽  
Author(s):  
Yu Wu ◽  
Hai Zhou ◽  
Xin-Jun Zheng ◽  
Yan Li ◽  
Li-Song Tang

1993 ◽  
Vol 44 (8) ◽  
pp. 1693 ◽  
Author(s):  
AG Condon ◽  
RA Richards ◽  
GD Farquhar

Carbon isotope discrimination (-) has been shown to be negatively correlated with water use efficiency for wheat cultivars grown in the glasshouse. In the field this negative correlation has been confirmed for peanut but it has yet to be confirmed for wheat. Indeed, several field studies on wheat have shown positive (rather than negative) relationships between dry matter production and -. The aim of this study was to determine the relationship between - and water use efficiency for wheat grown in a dryland environment characterized by winterlspring-dominant rainfall and terminal drought. Eight genotypes chosen to give a range in - of c. 2.0x10-3 were grown on a red earth at Moombooldool in the Riverina region of New South Wales. Water use and above-ground dry matter (DM) were measured over the course of the season. Water use was partitioned into transpiration and soil evaporation and values of crop water use efficiency (WET) and transpiration efficiency ( WT) calculated. To account for the effect on WT of seasonal changes in the vapour pressure deficit of the air (D), crop coefficients (k) were derived by multiplying WT by the transpiration-weighted average daytime value of D for each genotype. During the preanthesis period, when there was little limitation of soil water supply on growth, there was a positive relationship between DM and -, as observed previously. The relationship between WET and - also had a positive (though non-significant) trend, but the relationship between k and - was negative, i.e. once the effects of variation in the ratio T/ET and seasonal changes in D were accounted for, the negative correlation between water use efficiency and - re-emerged. This apparent conflict between WET and k arose because genotypes with high - values developed their leaf area faster, with two important consequences. First, high - genotypes transpired more of their water supply during the winter when D was low and the exchange of water for CO2 more efficient. Second, transpiration made up a greater proportion of total water use by high - genotypes. The relationship between water use efficiency and - was further complicated as the crops depleted the soil water store after anthesis. During this period DM production tended to be greater in low - genotypes that had conserved soil water in the preanthesis period. However, DM production also remained high for two high - genotypes. The cause of this variation in post-anthesis growth among high - genotypes was not established.


1994 ◽  
Vol 127 (2) ◽  
pp. 349-354 ◽  
Author(s):  
J.J.J. WILTSHIRE ◽  
M. H. UNSWORTH ◽  
C. J. WRIGHT

2003 ◽  
Vol 54 (7) ◽  
pp. 677 ◽  
Author(s):  
D. K. Singh ◽  
P. R. Bird ◽  
G. R. Saul

The planting of deep-rooted pasture species, herbaceous shrubs, and trees has been widely recommended to reduce deep drainage and recharge to the groundwater in the high rainfall zone (HRZ). However, in more recent years, the value of perennial pastures to reduce recharge has been questioned in areas with >600 mm annual rainfall. Currently, pastures dominated by annual species with relatively low productivity occur across much of the HRZ where deep drainage is most likely contributing to recharge. This review outlines our current understanding of water use by various herbaceous species, and indicates ways in which their water use may be increased in the HRZ of southern Australia. To reduce deep drainage in the HRZ, the soil water deficit must be increased prior to the opening autumn rains. This will allow a greater storage of water before any potential deep drainage occurs. There are two ways that this can be achieved with the use of herbaceous species. Firstly, change to or encourage species that use more water annually. Although plants with deeper root systems including lucerne have the ability to dry the soil to depth, a combination of winter- and summer-active species, rotational grazing, and pasture spelling would extend the active growing season and soil water use of annual and perennial species. A second option is to increase the productivity of the pasture, as there is a direct link between growth and water use. For example, improving pasture productivity by 50%, say from 8 to 12 t dry matter/ha, could use (transpire) approximately 160 mm more water annually by a C3 species, irrespective of evaporation from the soil surface or evaporative demand factors. This is supported by strong correlations between plant dry mass and water use among a wide range of C3 and C4 plants of diverse growth form and habitat. This relationship appears to have been overlooked in recent studies of various components of the soil water balance model, possibly due to limited and unreliable estimates of evapotranspiration (ET). An improved relationship between 'estimated' ET and measured dry matter production should improve the capability of the soil water balance model to predict deep drainage, which is primarily dependent on the ET. Ways to increase pasture productivity and soil water use include regular applications of fertiliser and lime, and better management of waterlogged and acidic soils in the HRZ. Summer-active native species may also be useful on soils where the persistence of other deep-rooted perennials is poor; however, little is known about their productivity and persistence when heavily grazed.We believe that the relationship between water use and pasture production needs to be reassessed to improve the predictability of the soil water balance approach and recommend further research in both the field and under controlled conditions to determine the potential for increased water use in the HRZ of southern Australia by combinations of plant species and greater pasture productivity.


2014 ◽  
Vol 34 (2) ◽  
Author(s):  
刘任涛 LIU Rentao ◽  
柴永青 CHAI Yongqing ◽  
徐坤 XU Kun ◽  
杨明秀 YANG Mingxiu ◽  
朱凡 ZHU Fan

Sign in / Sign up

Export Citation Format

Share Document