vegetation characteristics
Recently Published Documents


TOTAL DOCUMENTS

305
(FIVE YEARS 79)

H-INDEX

30
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Soumya Dasgupta ◽  
Tapajit Bhattacharya ◽  
Rahul Kaul

The relationship between various vegetation characteristics and the relative abundance of three hornbill species [Great Pied Hornbill (Buceros bicornis), Wreathed Hornbill (Rhyticeros undulatus) and Oriental Pied Hornbill (Anthracoceros albirostris)] was studied in and around Pakke Tiger Reserve, Arunachal Pradesh. We walked transects (n=11; 22 walks) in three study sites to detect hornbills. Vegetation sampling was done using circular plots (n=33; 10 m radius) at every 400m interval along each transect. Encounter rate (1.5/km) of Great Pied Hornbill (Buceros bicornis) was highest in the protected and undisturbed forest area where food and roosting tree density were also high (114/ha). Oriental Pied Hornbill was common in both the sites within Pakke Tiger reserve near riverine forests (0.75/km) and also in the dense undisturbed forest (0.875/km). Multivariate analysis revealed that tree density, presence of fruiting trees (utilized by hornbills), canopy cover, and tree diversity in a particular area are the major factors responsible for the assemblage of more than one species of hornbills. The study shows that protection of the forest patches to keep the diversity and density of the tree species intact is crucial for the survival and distribution of the hornbills in the landscape.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0252694
Author(s):  
Lena Kretz ◽  
Elisabeth Bondar-Kunze ◽  
Thomas Hein ◽  
Ronny Richter ◽  
Christiane Schulz-Zunkel ◽  
...  

Sediment and nutrient retention are essential ecosystem functions that floodplains provide and that improve river water quality. During floods, the floodplain vegetation retains sediment, which settles on plant surfaces and the soil underneath plants. Both sedimentation processes require that flow velocity is reduced, which may be caused by the topographic features and the vegetation structure of the floodplain. However, the relative importance of these two drivers and their key components have rarely been both quantified. In addition to topographic factors, we expect vegetation height and density, mean leaf size and pubescence, as well as species diversity of the floodplain vegetation to increase the floodplain’s capacity for sedimentation. To test this, we measured sediment and nutrients (carbon, nitrogen and phosphorus) both on the vegetation itself and on sediment traps underneath the vegetation after a flood at 24 sites along the River Mulde (Germany). Additionally, we measured biotic and topographic predictor variables. Sedimentation on the vegetation surface was positively driven by plant biomass and the height variation of the vegetation, and decreased with the hydrological distance (total R2 = 0.56). Sedimentation underneath the vegetation was not driven by any vegetation characteristics but decreased with hydrological distance (total R2 = 0.42). Carbon, nitrogen and phosphorus content in the sediment on the traps increased with the total amount of sediment (total R2 = 0.64, 0.62 and 0.84, respectively), while C, N and P on the vegetation additionally increased with hydrological distance (total R2 = 0.80, 0.79 and 0.92, respectively). This offers the potential to promote sediment and especially nutrient retention via vegetation management, such as adapted mowing. The pronounced signal of the hydrological distance to the river emphasises the importance of a laterally connected floodplain with abandoned meanders and morphological depressions. Our study improves our understanding of the locations where floodplain management has its most significant impact on sediment and nutrient retention to increase water purification processes.


2021 ◽  
Vol 13 (22) ◽  
pp. 4506
Author(s):  
Daniele Pinton ◽  
Alberto Canestrelli ◽  
Benjamin Wilkinson ◽  
Peter Ifju ◽  
Andrew Ortega

This study evaluates the skills of two types of drone-based point clouds, derived from LiDAR and photogrammetric techniques, in estimating ground elevation, vegetation height, and vegetation density on a highly vegetated salt marsh. The proposed formulation is calibrated and tested using data measured on a Spartina alterniflora-dominated salt marsh in Little Sapelo Island, USA. The method produces high-resolution (ground sampling distance = 0.40 m) maps of ground elevation and vegetation characteristics and captures the large gradients in the proximity of tidal creeks. Our results show that LiDAR-based techniques provide more accurate reconstructions of marsh vegetation (height: MAEVH = 12.6 cm and RMSEVH = 17.5 cm; density: MAEVD = 6.9 stems m−2 and RMSEVD = 9.4 stems m−2) and morphology (MAEM = 4.2 cm; RMSEM = 5.9 cm) than Digital Aerial Photogrammetry (DAP) (MAEVH = 31.1 cm; RMSEVH = 38.1 cm; MAEVD = 12.7 stems m−2; RMSEVD = 16.6 stems m−2; MAEM = 11.3 cm; RMSEM = 17.2 cm). The accuracy of the classification procedure for vegetation calculation negligibly improves when RGB images are used as input parameters together with the LiDAR-UAV point cloud (MAEVH = 6.9 cm; RMSEVH = 9.4 cm; MAEVD = 10.0 stems m−2; RMSEVD = 14.0 stems m−2). However, it improves when used together with the DAP-UAV point cloud (MAEVH = 21.7 cm; RMSEVH = 25.8 cm; MAEVD = 15.2 stems m−2; RMSEVD = 18.7 stems m−2). Thus, we discourage using DAP-UAV-derived point clouds for high-resolution vegetation mapping of coastal areas, if not coupled with other data sources.


Coasts ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 1-24
Author(s):  
Magdalena Valcheva ◽  
Desislava Sopotlieva ◽  
Iva Apostolova ◽  
Nadya Tsvetkova

Coastal dunes are valuable and vulnerable habitats that require scientific exploration and understanding of their natural processes; therefore, the aims of this study were to determine the current vegetation characteristics of dune habitats along the Bulgarian Coast in terms of species richness and cover of typical psammophytes and different non-psammophytic plant groups, and to analyze how they respond to certain environmental drivers. Data were collected from 12 dune systems. The research was focused on embryonic, white and grey dunes. The field work was conducted throughout July and August 2017. The vegetation was sampled at 154 phytosociological plots (5 m × 5 m). To understand how the vegetation responds to different drivers, we tested the correlation of defined species group richness and cover in relation to (1) the soil pH and EC values, (2) the distance from inland to the sea and (3) the range of different categories of land cover in the surrounding area. In order to track temporal vegetation changes, we compared the cover of defined species groups between 2003 and 2017. We registered a total number of 269 vascular plants, 12 bryophytes and 5 lichens. The strongest presence in all dune types, both in species richness and cover, was the group of grass- and shrubland plants. Weeds and ruderal plants had significant coverage in grey dunes, while the richness and cover of forest and alien plants were negligible among the studied dune habitats. The comparison of data between 2003 and 2017 revealed a substantial decline in the cover of psammophytes. We observed a clear pattern regarding the share of species richness of psammophytes and non-psammophytes among different locations. We detected that grey dunes were the most affected by the penetration of non-psammophytes.


2021 ◽  
pp. 241-250
Author(s):  
R. A. Duarte Oliveira ◽  
H. H. Marques da Rosa ◽  
A. A. Pereira ◽  
M. Passamani ◽  
R. D. Zenni

Protected areas, designed for biodiversity conservation, are currently affected by invasive species as most of them have documented biological invasions. This study aimed to test whether non–native mammal species richness influences the local distribution of native mammals and how distance from human settlement, elevation and vegetation characteristics influence native and non–native mammal richness in a national park in Brazil.We recorded 20 mammal species in the park, 17 native species and three non–native species. Native mammal richness was higher at intermediate elevations and in forests with lower tree densities and tree basal area. Non–native mammal richness was greater at higher elevations and in forests with low tree densities. Non–native mammals did not influence native mammal presence. In conclusion, the distribution of both native and non–native mammal species was affected by elevation and vegetation but not by distance from human settlements or non–native mammal presence.


Sign in / Sign up

Export Citation Format

Share Document