Numerical analysis of arc driving forces and temperature distribution in pulsed TIG welding

Author(s):  
Guangxi Zhao ◽  
Jun Du ◽  
Zhengying Wei ◽  
Ruwei Geng ◽  
Siyuan Xu
2009 ◽  
Vol 27 (2) ◽  
pp. 8s-12s ◽  
Author(s):  
Yusuke Mori ◽  
Toru Iwo ◽  
Motoshige Yumoto ◽  
Shinichi Tashiro ◽  
Manabu Tanaka

2013 ◽  
Vol 46 (3) ◽  
pp. 201-208 ◽  
Author(s):  
Sooseok Choi ◽  
TianMing Li ◽  
Takayuki Watanabe ◽  
Takashi Nakayama ◽  
Koji Otsuki

Author(s):  
S. Katoh

As a consequence of developments in the electronic control of welding power sources, there has been a trend for even inexpensive and widely used metal inert gas (MIG) and tungsten inert gas (TIG) welding machines to be equipped, as standard, with a high performance pulsed current waveform control function. Meanwhile advances in understanding of pulsed arc welding phenomena and the clarification of the associated functional effects have resulted in a gradual expansion of its scope of application and of improvements in practical performance. Thus inert gas shielded arc welding is entering an epoch when full scale pulsed arc welding will become standard. In this article, the progress of the development of pulsed TIG welding of aluminium is introduced, followed by a description of the main characteristics and finally examples of recent research concerning the improvement of weld quality are introduced.


2018 ◽  
Vol 19 (5) ◽  
pp. 503
Author(s):  
Amar Zerrout ◽  
Ali Khelil ◽  
Larbi Loukarfi

This study is an experimental and numerical analysis of the influence from changes in the conditions of inputs temperature and velocity on the behavior thermal and dynamic of a multi-jet swirling system impacting a flat plate. The experimental device comprising three diffusers arranged in line, of diameter D aloof 2D between the axes of their centers, impinging the plate perpendicularly at an impact height H = 6D. The swirl is obtained by a generator (swirl) of composed 12 fins arranged at 60° relative to the vertical placed just at the exit of the diffuser. By imposing the temperature and velocity for three input conditions with three studied configurations. The paper deals with find the configuration that optimizes the best thermal homogenization. The results show that the configuration having an equilibrated inlet temperature (T, T, T) is derived from a good temperature distribution on the baffle wall and a better thermal transfer from the plate. The system was numerically simulated by the fluent code by using the turbulence model (k–ε). This last has yielded results accorded to those experimental results.


Sign in / Sign up

Export Citation Format

Share Document