High performance nonlinear controller design for AC and DC machines: partial feedback linearization approach

2017 ◽  
Vol 6 (2) ◽  
pp. 679-693 ◽  
Author(s):  
Subroto K. Sarkar ◽  
Sajal K. Das
Author(s):  
Xibei Ding ◽  
Alok Sinha

This paper presents a new nonlinear controller design approach for a hydraulic power plant focusing on load frequency control aspect. It is based on input state feedback linearization and sliding mode/H∞ control. Simulation results for a nonlinear dynamic model of entire hydropower plant are presented and compared to those from the classical linear proportional-integral (PI) controller. A novel two-stage scheme for the nonlinear controller design with integral feedback is presented for a fast transient response and zero steady-state error.


Author(s):  
Xibei Ding ◽  
Alok Sinha

This paper presents a new nonlinear controller design approach for a hydraulic power plant focusing on Load Frequency Control aspect. It is based on input state feedback linearization and sliding mode/H∞ control. Simulation results for a nonlinear dynamic model of entire hydropower plant are presented and compared to those from the classical linear PI controller. A novel two-stage scheme for the nonlinear controller design with integral feedback is presented for a fast transient response and zero steady state error.


Author(s):  
Mirosław Tomera

Nonlinear controller design of a ship autopilotThe main goal here is to design a proper and efficient controller for a ship autopilot based on the sliding mode control method. A hydrodynamic numerical model of CyberShip II including wave effects is applied to simulate the ship autopilot system by using time domain analysis. To compare the results similar research was conducted with the PD controller, which was adapted to the autopilot system. The differences in simulation results between two controllers are analyzed by a cost function composed of a heading angle error and rudder deflection either in calm water or in waves. Simulation results show the effectiveness of the method in the presence of nonlinearities and disturbances, and high performance of the proposed controller.


Sign in / Sign up

Export Citation Format

Share Document