scholarly journals Nonlinear controller design of a ship autopilot

Author(s):  
Mirosław Tomera

Nonlinear controller design of a ship autopilotThe main goal here is to design a proper and efficient controller for a ship autopilot based on the sliding mode control method. A hydrodynamic numerical model of CyberShip II including wave effects is applied to simulate the ship autopilot system by using time domain analysis. To compare the results similar research was conducted with the PD controller, which was adapted to the autopilot system. The differences in simulation results between two controllers are analyzed by a cost function composed of a heading angle error and rudder deflection either in calm water or in waves. Simulation results show the effectiveness of the method in the presence of nonlinearities and disturbances, and high performance of the proposed controller.

Author(s):  
Xibei Ding ◽  
Alok Sinha

This paper presents a new nonlinear controller design approach for a hydraulic power plant focusing on load frequency control aspect. It is based on input state feedback linearization and sliding mode/H∞ control. Simulation results for a nonlinear dynamic model of entire hydropower plant are presented and compared to those from the classical linear proportional-integral (PI) controller. A novel two-stage scheme for the nonlinear controller design with integral feedback is presented for a fast transient response and zero steady-state error.


1988 ◽  
Vol 110 (3) ◽  
pp. 313-320 ◽  
Author(s):  
D. Cho ◽  
J. K. Hedrick

A nonlinear, “sliding mode” fuel-injection controller is designed based on a physically motivated, mathematical engine model. The designed controller can achieve a commanded air-to-fuel ratio with excellent transient properties, which offers the potential for improving fuel economy, torque transients, and emission levels. The controller is robust to model errors as well as to rapidly changing maneuvers of throttle and spark advance. The sliding mode control method offers a great potential for future engine control problems, since: it results in a relatively simple control structure that requires little on-line computing and no table lookups; it is robust to model errors and disturbances; and it can be easily adapted to a family of engines.


Author(s):  
Xibei Ding ◽  
Alok Sinha

This paper presents a new nonlinear controller design approach for a hydraulic power plant focusing on Load Frequency Control aspect. It is based on input state feedback linearization and sliding mode/H∞ control. Simulation results for a nonlinear dynamic model of entire hydropower plant are presented and compared to those from the classical linear PI controller. A novel two-stage scheme for the nonlinear controller design with integral feedback is presented for a fast transient response and zero steady state error.


Author(s):  
Wending Li ◽  
Guanglin Shi

The paper proposes a novel dual-redundancy motor pump for the electro-hydrostatic actuator. Rather than the traditional single motor pump electro-hydrostatic actuator system, the system proposed in this paper can operate in three working modes and automatically adjust its operating condition in accordance with task requirements. The novel dual-redundancy electro-hydrostatic actuator system prototype was developed, and a high-performance control method was proposed and applied to the system, combining proportional–integral–derivative and sliding mode control to study the control strategy and implementation method of double closed loop. In addition, a physical model simulation was conducted on the basis of Amesim for this electro-hydrostatic actuator under several working conditions. Results showed that the dual-redundancy electro-hydrostatic actuator can decrease power loss and demonstrate excellent performance and reliability.


1999 ◽  
Vol 122 (3) ◽  
pp. 426-434 ◽  
Author(s):  
Edmond Richer ◽  
Yildirim Hurmuzlu

In this article we present two nonlinear force controllers based on the sliding mode control theory. For this purpose we use the detailed mathematical model of the pneumatic system developed in the first part of the paper. The first controller is based on the complete model, and exhibits superior performance both in the numerical simulation and experiments, but requires complex online computations for the control law. The second controller neglects the valve dynamics and the time delay due to connecting tubes. The performance of this controller exhibits slight degradation for configurations with relatively short tubes, and at frequencies up to 20 Hz. At higher frequencies or when long connecting tubes are used, however, the performance exhibits significant degradation compared to the one provided by the full order controller. [S0022-0434(00)00703-6]


2018 ◽  
Vol 7 (3.7) ◽  
pp. 303
Author(s):  
K Chun ◽  
B Kim

This paper discusses a robust rotate and move (RAM) controller by considering a water striding robot (WSR) with two wheels. The proposed controller commands the WSR to rotate and move straight toward the desired target by considering the two wheel WSR characteristics. Sliding mode control (SMC) is one of the solutions in nonlinear controller design and it has fast response and robustness. SMC is applied to the WSR RAM control. However, the sliding mode has a problem called chattering because of using sign function in controller design and this will cause the system unstable in WSR control because the chattering make the WSR sink into water easily. As a solution, sign function is replaced by saturation function. The proposed controller is noble and track the target point easily and also has robustness. The stability of the proposed controller is proved by Lyapunov function and the simulation results show the fast response and robustness.  


Sign in / Sign up

Export Citation Format

Share Document