Traveling wave solution and Painleve’ analysis of generalized fisher equation and diffusive Lotka–Volterra model

Author(s):  
Soumen Kundu ◽  
Sarit Maitra ◽  
Arindam Ghosh
2020 ◽  
Vol 10 (1) ◽  
pp. 66-75
Author(s):  
Byungsoo Moon

Abstract In this paper, we study the existence of peaked traveling wave solution of the generalized μ-Novikov equation with nonlocal cubic and quadratic nonlinearities. The equation is a μ-version of a linear combination of the Novikov equation and Camassa-Hom equation. It is found that the equation admits single peaked traveling wave solutions.


1996 ◽  
Vol 54 (19) ◽  
pp. 13484-13486 ◽  
Author(s):  
David R. Rowland ◽  
Zlatko Jovanoski

Mathematics ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 455 ◽  
Author(s):  
Zhe Yin ◽  
Yongguang Yu ◽  
Zhenzhen Lu

This paper is concerned with the stability of an age-structured susceptible–exposed– infective–recovered–susceptible (SEIRS) model with time delay. Firstly, the traveling wave solution of system can be obtained by using the method of characteristic. The existence and uniqueness of the continuous traveling wave solution is investigated under some hypotheses. Moreover, the age-structured SEIRS system is reduced to the nonlinear autonomous system of delay ODE using some insignificant simplifications. It is studied that the dimensionless indexes for the existence of one disease-free equilibrium point and one endemic equilibrium point of the model. Furthermore, the local stability for the disease-free equilibrium point and the endemic equilibrium point of the infection-induced disease model is established. Finally, some numerical simulations were carried out to illustrate our theoretical results.


2019 ◽  
Vol 31 (3) ◽  
pp. 407-422 ◽  
Author(s):  
BENDONG LOU ◽  
JUNFAN LU ◽  
YOSHIHISA MORITA

In this paper, we study the entire solutions of the Fisher–KPP (Kolmogorov–Petrovsky–Piskunov) equation ut = uxx + f(u) on the half line [0, ∞) with Dirichlet boundary condition at x = 0. (1) For any $c \ge 2\sqrt {f'(0)} $, we show the existence of an entire solution ${{\cal U}^c}(x,t)$ which connects the traveling wave solution φc(x + ct) at t = −∞ and the unique positive stationary solution V(x) at t = +∞; (2) We also construct an entire solution ${{\cal U}}(x,t)$ which connects the solution of ηt = f(η) at t = −∞ and V(x) at t = +∞.


Sign in / Sign up

Export Citation Format

Share Document