nonlinear autonomous system
Recently Published Documents


TOTAL DOCUMENTS

14
(FIVE YEARS 3)

H-INDEX

4
(FIVE YEARS 1)

2021 ◽  
Vol 118 (34) ◽  
pp. e2023719118 ◽  
Author(s):  
Gérard Ben Arous ◽  
Yan V. Fyodorov ◽  
Boris A. Khoruzhenko

We consider a nonlinear autonomous system of N≫1 degrees of freedom randomly coupled by both relaxational (“gradient”) and nonrelaxational (“solenoidal”) random interactions. We show that with increased interaction strength, such systems generically undergo an abrupt transition from a trivial phase portrait with a single stable equilibrium into a topologically nontrivial regime of “absolute instability” where equilibria are on average exponentially abundant, but typically, all of them are unstable, unless the dynamics is purely gradient. When interactions increase even further, the stable equilibria eventually become on average exponentially abundant unless the interaction is purely solenoidal. We further calculate the mean proportion of equilibria that have a fixed fraction of unstable directions.


Mathematics ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 455 ◽  
Author(s):  
Zhe Yin ◽  
Yongguang Yu ◽  
Zhenzhen Lu

This paper is concerned with the stability of an age-structured susceptible–exposed– infective–recovered–susceptible (SEIRS) model with time delay. Firstly, the traveling wave solution of system can be obtained by using the method of characteristic. The existence and uniqueness of the continuous traveling wave solution is investigated under some hypotheses. Moreover, the age-structured SEIRS system is reduced to the nonlinear autonomous system of delay ODE using some insignificant simplifications. It is studied that the dimensionless indexes for the existence of one disease-free equilibrium point and one endemic equilibrium point of the model. Furthermore, the local stability for the disease-free equilibrium point and the endemic equilibrium point of the infection-induced disease model is established. Finally, some numerical simulations were carried out to illustrate our theoretical results.


2019 ◽  
Vol 34 (28) ◽  
pp. 1950156 ◽  
Author(s):  
Subhajyoti Pal ◽  
Subenoy Chakraborty

This paper investigates the cosmological dynamics of the Hessence scalar field coupled with the dark matter in the background of the teleparallel gravity. We have assumed that the potential of the scalar field is exponential in nature whereas the [Formula: see text] appearing in the teleparallel theory has the form [Formula: see text]. The field equations of this system reduce to a nonlinear autonomous system and dynamical system analysis is then performed. Due to the nonlinearity and the existence of multiple zero eigenvalues, the traditional procedures of analysis break down. So some novel technique is required. One of the latest such techniques is the invariant manifold theory. By the application of this theory, one projects the variables linked with the zero eigenvalues onto the variables linked with the nonzero eigenvalues to compute the center manifolds and the reduced systems associated with the critical points. These reduced systems reflect the nature of the whole dynamical systems. They also have less dimension and are often simple in nature. Hence, it is possible to solve them directly. In this paper, we work exactly in this spirit and find the center manifolds and solve the corresponding reduced system for some of the critical points associated with the dynamical system. We discover some interesting results namely that there are certain bounds on the interaction term [Formula: see text] which asserts the stability of the systems. We also present various stability diagrams of the reduced systems. An asymptotic analysis is then done for the critical points at infinity. Finally, we discuss the cosmological interpretation of our results.


2013 ◽  
Vol 2013 ◽  
pp. 1-3
Author(s):  
Sachin Bhalekar

We report the finding of the simple nonlinear autonomous system exhibiting infinite-scroll attractor. The system is generated from the pendulum equation with complex-valued function. The proposed system is having infinitely many saddle points of index two which are responsible for the infinite-scroll attractor.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Tao Fang ◽  
Jitao Sun

This paper studies the stability of complex-valued nonlinear differential system. The stability criteria of complex-valued nonlinear autonomous system are established. For the general complex-valued nonlinear non-autonomous system, the comparison principle in the context of complex fields is given. Those derived stability criteria not only provide a new method to analyze complex-valued differential system, but also greatly reduce the complexity of analysis and computation.


2013 ◽  
Vol 11 (8) ◽  
Author(s):  
John Neuberger ◽  
John Neuberger ◽  
James Swift

AbstractGiven a nonlinear autonomous system of ordinary or partial differential equations that has at least local existence and uniqueness, we offer a linear condition which is necessary and sufficient for existence to be global. This paper is largely concerned with numerically testing this condition. For larger systems, principals of computations are clear but actual implementation poses considerable challenges. We give examples for smaller systems and discuss challenges related to larger systems. This work is the second part of a program, the first part being [Neuberger J.W., How to distinguish local semigroups from global semigroups, Discrete Contin. Dyn. Syst. (in press), available at http://arxiv.org/abs/1109.2184]. Future work points to a distant goal for problems as in [Fefferman C.L., Existence and Smoothness of the Navier-Stokes Equation, In: The Millennium Prize Problems, Clay Mathematics Institute, Cambridge/American Mathematical Society, Providence, 2006, 57–67].


2002 ◽  
Vol 9 (2) ◽  
pp. 207-226
Author(s):  
Lenka Baráková

Abstract A three-dimensional real nonlinear autonomous system of a concrete type is studied. The Hopf bifurcation is analyzed and the existence of a limit cycle is proved. A positively invariant set, which is globally attractive, is found using a suitable Lyapunov-like function. Corollaries for a cubic system are presented. Also, a two-dimensional nonlinear system is studied as a restricted system. An application in economics to the Kodera's model of inflation is presented. In some sense, the model of inflation is an extension of the dynamic version of the neo-keynesian macroeconomic IS-LM model and the presented results correspond to the results for the IS-LM model.


Author(s):  
Luis A. Sánchez

This paper considers the dynamics of a three-dimensional nonlinear autonomous system that models the behaviour of an electrical circuit. Results on the existence of stable periodic oscillations and the behaviour of Poincaré–Bendixon types are obtained. The work is based on a variation of classical monotone systems theory.


Sign in / Sign up

Export Citation Format

Share Document