scholarly journals Optimal reactive power dispatch of wind power plant cluster considering static voltage stability for low-carbon power system

2015 ◽  
Vol 3 (1) ◽  
pp. 114-122 ◽  
Author(s):  
Shuo YANG ◽  
Weisheng WANG ◽  
Chun LIU ◽  
Yuehui HUANG
2018 ◽  
Vol 7 (3.15) ◽  
pp. 1
Author(s):  
Nabil Fikri Ruslan ◽  
Ismail Musirin ◽  
Mohamad Khairuzzaman Mohamad Zamani ◽  
Muhammad Murtadha Othman ◽  
Zulkiffli Abdul Hamid ◽  
...  

General power flow studies do not manage to trace the contributors by generators on power losses in the whole power transmission system. Thus, power tracing approach is utilized to address this issue. Power tracing is a termed used to describe the contributors for the power losses dissipated on the transmission line. The traditional technique made use the knowledge of circuit analysis such as cut set theory. However, there was no element of optimization which can help to achieve the optimal solution. This paper presents the power tracing monitoring during voltage stability improvement process, implemented by optimal reactive power dispatch. In this study, the impact of power tracing on voltage stability variation was investigated. Evolutionary Programming (EP) was developed and utilized to incorporate power tracing, along with voltage stability improvement. A pre-developed scalar voltage stability index was incorporated to indicate the voltage stability condition. On the other hand, the voltage stability initiative was conducted via the optimal reactive power dispatch. The power tracing was monitored for both; the pre-optimization and post-optimization scenarios. Small system model was tested to realize the power tracing phenomenon, which is rather rare study in power system community. Results on power tracing obtained during the pre- and post-optimal reactive power dispatch revealed that not all generators will involve in the contribution on the total transmission loss in the system. This can be beneficial to power system operators for allocating the cost without discrimination in the long run.   


2021 ◽  
Vol 1 (1) ◽  
pp. 32-44
Author(s):  
Sagar Dharel ◽  
Rabindra Maharjan

Government of Nepal has realized that wind energy could become a major source of alternative energy to solve energy crisis in the country as well as serve the purpose of energy mix. Various studies have identified several locations with potential for wind power generation in Nepal. The integration of wind power plant to the national grid, however, raises concerns regarding the power system stability. The voltage stability of the grid is a key issue, the effect on which increases with the increase in wind power penetration in the grid. This study performs voltage stability analysis due to high penetration of wind power in Integrated Nepalese Power System (INPS). Both steady state and dynamic stability study is performed using the power system simulation software DigSILENT/PowerFactory for different types of wind turbine generators.


2021 ◽  
Vol 56 (3) ◽  
pp. 111-123
Author(s):  
Muhammad Bachtiar Nappu ◽  
Ardiaty Arief ◽  
Ainun Maulidah

A sound power system must have voltage values at all buses that do not exceed the tolerance limit of ± 5% with small power losses. Voltage instability can be caused by interference or sudden power generation outage from the system. Indonesia's Southern Sulawesi power system has been interconnected with wind power plants located in Sidrap Regency and Jeneponto Regency. Wind speed energy used by wind power plants to generate electricity vary and not always constant. Hence, this can cause fluctuations and produce varied outputs that will affect the voltage profile and stability of the Southern Sulawesi interconnection system. Therefore, it is essential to assess the voltage stability of the Southern Sulawesi power system after the integration of Sidrap and Jeneponto WPPs. First, this study analyzes the voltage profile of the Southern Sulawesi interconnection system voltage after integrating the Sidrap wind power plants and Jeneponto Wind Power Plant during the peak day load and peak night load. Second, the study assesses the voltage stability with a varied output power of both Sidrap and Jeneponto Wind Power Plant. After integrating Sidrap and Jeneponto Wind Power Plants, the results showed that the voltage values at all system buses are stable and within the IEEE standard (between 0.95 p.u. and 1.05 p.u.). In addition, the voltages of the Southern Sulawesi power system with various outputs of both WPPs are still stable and within the IEEE standard.


Energies ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1607 ◽  
Author(s):  
Moumita Sarkar ◽  
Müfit Altin ◽  
Poul E. Sørensen ◽  
Anca D. Hansen

This article presents the development of a reactive power capability model for a wind power plant (WPP) based on an aggregated wind power collection system. The voltage and active power dependent reactive power capability are thus calculated by using aggregated WPP collection system parameters and considering losses in the WPP collection system. The strength of this proposed reactive power capability model is that it not only requires less parameters and substantially less computational time compared to typical detailed models of WPPs, but it also provides an accurate estimation of the available reactive power. The proposed model is based on a set of analytical equations which represent converter voltage and current limitations. Aggregated impedance and susceptance of the WPP collection system are also included in the analytical equations, thereby incorporating losses in the collection system in the WPP reactive power capability calculation. The proposed WPP reactive power capability model is compared to available methodologies from literature and for different WPP topologies, namely, Horns Rev 2 WPP and Burbo Bank WPP. Performance of the proposed model is assessed and discussed by means of simulations of various case studies demonstrating that the error between the calculated reactive power using the proposed model and the detailed model is below 4% as compared to an 11% error in the available method from literature. The efficacy of the proposed method is further exemplified through an application of the proposed method in power system integration studies. The article provides new insights and better understanding of the WPPs’ limits to deliver reactive power support that can be used for power system stability assessment, particularly long-term voltage stability.


Author(s):  
Mohamad Khairuzzaman Mohamad Zamani ◽  
Ismail Musirin ◽  
Mohamad Sabri Omar ◽  
Saiful Izwan Suliman ◽  
Nor Azura Md. Ghani ◽  
...  

<p>Voltage instability problem has been known as a significant threat to power system operation since its occurrence can lead to power interruption. This phenomenon can be due to uncontrollable load increment, line and generator outage contingencies or unplanned load curtailment. Optimal reactive power dispatch involving reactive power support can be one of the options for improving voltage stability of a power system, which also requires optimization process. Optimal sizing and location can of reactive power support can avoid the system from experiencing over-compensated or under-compensated phenomena. The presence of optimization techniques has helped solving non-optimal phenomenon, nevertheless some setbacks have also been experienced in terms of inaccuracy and stuck in local optima. This paper presents the application of Gravitational Search Algorithm (GSA) technique in attempt to solve optimal reactive power dispatch problem in terms of reactive power support for voltage stability improvement. Optimization process tested on IEEE 14-bus Reliability Test System (RTS) has revealed its superiority with significant promising results in terms of voltage stability improvement in the test system. </p>


Sign in / Sign up

Export Citation Format

Share Document