scholarly journals Robust optimization for improving resilience of integrated energy systems with electricity and natural gas infrastructures

2018 ◽  
Vol 6 (5) ◽  
pp. 1066-1078 ◽  
Author(s):  
Hao CONG ◽  
Yang HE ◽  
Xu WANG ◽  
Chuanwen JIANG
Author(s):  
Andrei Y. Petrov ◽  
Jeanette B. Berry ◽  
Abdolreza Zaltash

The Department of Energy (DOE), though Oak Ridge National Laboratory (ORNL), has worked in partnership with industry to develop highly-efficient Integrated Energy Systems (IES) that provide combined cooling, heating, and power (CHP). Equipment configurations and performance have been optimized and system construction has been simplified, resulting in lower design and installation costs. Consequently, government-industry partnerships are achieving the goal of promoting replication of these advanced systems. This paper describes and presents data collected during the operation of on-site power generation systems developed and implemented by DOE/ORNL-industry teams: (1) Burns & McDonnell and (2) Honeywell Labs. The Burns & McDonnell IES is operated by Austin Energy, the municipal utility in Austin, Texas. The gas turbine produces 4.5-MW of electricity, and its exhaust drives a 2,500-ton absorption chiller. The featured project implements a modular system design that is being used to construct a medical district utility at Dell Children's Medical Center of Central Texas-another government-industry project carried out in partnership with Austin Energy. The Honeywell IES at Ft. Bragg, North Carolina, is anchored by 5.7-MW natural-gas turbine that uses turbine exhaust to drive a 1,000-ton absorption chiller and/or an 80,000-lb/h heat recovery steam generator. An optimization software program provides system operators with hour-by-hour information on system costs associated with various operating scenarios. The project developed reference designs for 1.2-5.7 MW turbine-based systems to better communicate options for system design and facilitate feasibility studies. These systems demonstrate the thermal and economic value of "waste heat" by providing space heating and/or cooling with no additional fuel use. Field data confirms that the fuel use efficiency of these combined cooling, heating and power systems approaches 80% based on the higher heating value (HHV) of natural gas.


2020 ◽  
Vol 11 (6) ◽  
pp. 4818-4832
Author(s):  
Shuai Lu ◽  
Wei Gu ◽  
Cuo Zhang ◽  
Ke Meng ◽  
Zhaoyang Dong

Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3400
Author(s):  
Jie Xing ◽  
Peng Wu

Bidirectional coupling systems for electricity and natural gas composed of gas units and power-to-gas (P2G) facilities improve the interactions between different energy systems. In this paper, a combined optimization planning method for an electricity-natural gas coupling system with P2G was studied. Firstly, the characteristics of the component model of the electricity-natural gas coupling system were analyzed. The optimization planning model for the electricity-natural gas coupling system was established with the goal of minimizing the sum of the annual investment costs and the annual operation costs. Based on the established model, the construction statuses for different types of units, power lines, and pipelines and the output distribution values for gas units and P2G stations were optimized. Then, the immune algorithm was proposed to solve the optimization planning model. Finally, an electricity-natural gas coupling system composed of a seven-node natural gas system and a nine-node power system was taken as an example to verify the rationality and effectiveness of the model under different scenarios.


Sign in / Sign up

Export Citation Format

Share Document