scholarly journals Generic vanishing in characteristic $$p>0$$ and the geometry of theta divisors

Author(s):  
Christopher D. Hacon ◽  
Zsolt Patakfalvi
2016 ◽  
Vol 138 (4) ◽  
pp. 963-998 ◽  
Author(s):  
Christopher D. Hacon ◽  
Zsolt Patakfalvi

2021 ◽  
Vol 9 ◽  
Author(s):  
Benjamin Antieau ◽  
Bhargav Bhatt ◽  
Akhil Mathew

Abstract We give counterexamples to the degeneration of the Hochschild-Kostant-Rosenberg spectral sequence in characteristic p, both in the untwisted and twisted settings. We also prove that the de Rham-HP and crystalline-TP spectral sequences need not degenerate.


Author(s):  
Zihan Kang ◽  
Enzhu Lin ◽  
Ni Qin ◽  
Jiang Wu ◽  
Baowei Yuan ◽  
...  

Piezocatalysis emerged as a novel technique to make use of mechanical energy in dealing with organic pollutants in wastewater. In this work, the ferroelectric Bi2WO6 (BWO) nanosheets with a characteristic...


Author(s):  
Yongqiang Liu ◽  
Laurentiu Maxim ◽  
Botong Wang

Abstract We use the non-proper Morse theory of Palais–Smale to investigate the topology of smooth closed subvarieties of complex semi-abelian varieties and that of their infinite cyclic covers. As main applications, we obtain the finite generation (except in the middle degree) of the corresponding integral Alexander modules as well as the signed Euler characteristic property and generic vanishing for rank-one local systems on such subvarieties. Furthermore, we give a more conceptual (topological) interpretation of the signed Euler characteristic property in terms of vanishing of Novikov homology. As a byproduct, we prove a generic vanishing result for the $L^2$-Betti numbers of very affine manifolds. Our methods also recast June Huh’s extension of Varchenko’s conjecture to very affine manifolds and provide a generalization of this result in the context of smooth closed sub-varieties of semi-abelian varieties.


2011 ◽  
Vol 10 (04) ◽  
pp. 605-613
Author(s):  
ALEXEY V. GAVRILOV

Let 𝕜 be a field of characteristic p > 0 and R be a subalgebra of 𝕜[X] = 𝕜[x1, …, xn]. Let J(R) be the ideal in 𝕜[X] defined by [Formula: see text]. It is shown that if it is a principal ideal then [Formula: see text], where q = pn(p - 1)/2.


2017 ◽  
Vol 21 (4) ◽  
pp. 2419-2460 ◽  
Author(s):  
Giuseppe Pareschi ◽  
Mihnea Popa ◽  
Christian Schnell

1990 ◽  
Vol 18 (6) ◽  
pp. 1701-1728 ◽  
Author(s):  
Frank M. Kouwenhoven
Keyword(s):  

2010 ◽  
Vol 06 (07) ◽  
pp. 1541-1564 ◽  
Author(s):  
QINGQUAN WU ◽  
RENATE SCHEIDLER

Let K be a function field over a perfect constant field of positive characteristic p, and L the compositum of n (degree p) Artin–Schreier extensions of K. Then much of the behavior of the degree pn extension L/K is determined by the behavior of the degree p intermediate extensions M/K. For example, we prove that a place of K totally ramifies/is inert/splits completely in L if and only if it totally ramifies/is inert/splits completely in every M. Examples are provided to show that all possible decompositions are in fact possible; in particular, a place can be inert in a non-cyclic Galois function field extension, which is impossible in the case of a number field. Moreover, we give an explicit closed form description of all the different exponents in L/K in terms of those in all the M/K. Results of a similar nature are given for the genus, the regulator, the ideal class number and the divisor class number. In addition, for the case n = 2, we provide an explicit description of the ramification group filtration of L/K.


Sign in / Sign up

Export Citation Format

Share Document