scholarly journals Counterexamples to Hochschild-Kostant-Rosenberg in characteristic p

2021 ◽  
Vol 9 ◽  
Author(s):  
Benjamin Antieau ◽  
Bhargav Bhatt ◽  
Akhil Mathew

Abstract We give counterexamples to the degeneration of the Hochschild-Kostant-Rosenberg spectral sequence in characteristic p, both in the untwisted and twisted settings. We also prove that the de Rham-HP and crystalline-TP spectral sequences need not degenerate.

2004 ◽  
Vol 01 (01n02) ◽  
pp. 33-48 ◽  
Author(s):  
E. J. BEGGS ◽  
TOMASZ BRZEZIŃSKI

Various aspects of the de Rham cohomology of Hopf algebras are discussed. In particular, it is shown that the de Rham cohomology of an algebra with the differentiable coaction of a cosemisimple Hopf algebra with trivial 0-th cohomology group, reduces to the de Rham cohomology of (co)invariant forms. Spectral sequences are discussed and the van Est spectral sequence for Hopf algebras is introduced. A definition of Hopf–Lie algebra cohomology is also given.


Author(s):  
Fouad El Zein ◽  
Lˆe D˜ung Tr ´ang

This chapter discusses mixed Hodge structures (MHS). It first defines the abstract category of Hodge structures and introduces spectral sequences. The decomposition on the cohomology of Kähler manifolds is used to prove the degeneration at rank 1 of the spectral sequence defined by the filtration F on the de Rham complex in the projective nonsingular case. The chapter then introduces an abstract definition of MHS as an object of interest in linear algebra. It then attempts to develop algebraic homology techniques on filtered complexes up to filtered quasi-isomorphisms of complexes. Finally, this chapter provides the construction of the MHS on any algebraic variety.


2016 ◽  
Vol 9 (2) ◽  
pp. 607-686
Author(s):  
Robert Lipshitz ◽  
Peter S. Ozsváth ◽  
Dylan P. Thurston

Author(s):  
Nobuaki Yagita

AbstractWe study the coniveau spectral sequence for quadrics defined by Pfister forms. In particular, we explicitly compute the motivic cohomology of anisotropic quadrics over ℝ, by showing that their coniveau spectral sequences collapse from the -term


Author(s):  
Loring W. Tu

This chapter focuses on spectral sequences. The spectral sequence is a powerful computational tool in the theory of fiber bundles. First introduced by Jean Leray in the 1940s, it was further refined by Jean-Louis Koszul, Henri Cartan, Jean-Pierre Serre, and many others. The chapter provides a short introduction, without proofs, to spectral sequences. As an example, it computes the cohomology of the complex projective plane. The chapter then details Leray's theorem. A spectral sequence is like a book with many pages. Each time one turns a page, one obtains a new page that is the cohomology of the previous page.


1997 ◽  
Vol 147 ◽  
pp. 63-69 ◽  
Author(s):  
Koji Cho

AbstractWe prove vanishing theorems of cohomology groups of local system, which generalize Kita and Noumi’s result and partially Aomoto’s result. Main ingredients of our proof are the Hodge to de Rham spectral sequence and Serre’s vanishing theorem in algebraic geometry.


2019 ◽  
Vol 150 (6) ◽  
pp. 2815-2848
Author(s):  
Joana Cirici ◽  
Daniela Egas Santander ◽  
Muriel Livernet ◽  
Sarah Whitehouse

AbstractLet R be a commutative ring with unit. We endow the categories of filtered complexes and of bicomplexes of R-modules, with cofibrantly generated model structures, where the class of weak equivalences is given by those morphisms inducing a quasi-isomorphism at a certain fixed stage of the associated spectral sequence. For filtered complexes, we relate the different model structures obtained, when we vary the stage of the spectral sequence, using the functors shift and décalage.


Sign in / Sign up

Export Citation Format

Share Document