scholarly journals Quantity decisions of two-stage competitive location model based on different location modes

Author(s):  
Yadong Li ◽  
Xuemei Li

AbstractThe facility location of a competing firm in a market has great importance in supply chain management. The two-stage competitive location model formulates the decision process of an entrant firm facing both location and price competition. In this paper, we incorporated the facility quantity as a decision variable into a two-stage competitive location model with the objective of maximized profit. Sequential location mode and simultaneous location mode were applied to simulate different location behavior. We developed an approximate branch and bound method to accelerate optimal location searching speed under the premise of accuracy. Greedy algorithm and approximate branch and bound method were used in two location modes. From algorithm evaluation, we found that the approximate branch and bound method is an ideal supplement of the traditional branch and bound method, especially for location problems with large-scale potential locations. Compare the results of the two modes, we found when a new firm is going to enter a market with both price and location competition, sequential location mode is an advantage strategy, since it can gain more profit than simultaneous location mode.

2019 ◽  
Vol 11 (12) ◽  
pp. 3242 ◽  
Author(s):  
Ming Zhang ◽  
Yu Zhang ◽  
Zhifeng Qiu ◽  
Hanlin Wu

This study tackled the multimodal facility location problem in emergency medical rescue. First, an intermodal setting was suggested, i.e., considering cooperation between ground ambulances and helicopters in emergency medical rescues. Specifically, four scheduling modes were structured: air only, ground only, air-ground combined mode if landing and take-off site for helicopters near the wounded is available, and air-ground transshipment if the landing and take-off site for helicopters near the wounded is not available. Second, a two-stage covering location model was proposed. In the first stage, a set-covering model was developed to achieve maximum coverage and minimal total construction cost of emergency rescue facilities. The optimal mixed allocation proportion of helicopters and ground ambulances was then obtained to guarantee cohesion between the hierarchical models and covering characteristics and the economic efficiency of location results. In the second stage, for given emergency locations, an emergency scheduling mode matrix was constructed for meeting response time and total rescue time constraints. The proposed model obtains optimal results in terms of coverage, construction cost, and rescue time. A case study of Beijing, China validated the feasibility and efficiency of the two-stage covering location model for multimodal emergency medical rescue network. The proposed air-ground rescue system and two-stage covering location model can be extended and also used for large-scale disaster rescue management.


2020 ◽  
Vol 1 (1) ◽  
pp. 40-52
Author(s):  
Eman Lesmana ◽  
Julita Nahar ◽  
Annisa D. P

This paper discusses the Two-Stage Guillotine Cutting Stock Problem (2GCSP) in the garment industry, namely how to determine the two-stage guillotine pattern that is used to cut fabric stocks into several certain size t-shirt materials that are produced based on the demand for each size of the shirt. 2GCSP is modeled in the form of Linear Integer Optimization and finding solutions using the Branch and Bound method. In this paper also presented a Graphical User Interface with Maple software as an interactive tool to find the best fabric stock cutting patterns. The results show that the optimal solution can be determined by solving numerically using the Branch and Bound method and Maple optimization packages. The solution is shown with an illustration of the pattern and the amount of fabric cut based on the pattern.


2011 ◽  
Vol 145 ◽  
pp. 494-498
Author(s):  
Yi Zhang ◽  
Meng Zhang

In this paper, we introduce a hybrid optimization algorithm with the Branch-and-Bound Method and the Ant Colony Optimization to solve the multi-chromosomal reversal median problem. We convert the large-scale genome into TSP maps at first. Then we use a hybrid optimization algorithm with the Branch-and-Bound Method and the Ant Colony Optimization to solve the problem. In our improved algorithm, we increase the search speed by implement multi-branch parallel search of ACO. Our extensive experiments on simulated datasets show that this median solver is efficient.


Author(s):  
Lu Chen ◽  
Handing Wang ◽  
Wenping Ma

AbstractReal-world optimization applications in complex systems always contain multiple factors to be optimized, which can be formulated as multi-objective optimization problems. These problems have been solved by many evolutionary algorithms like MOEA/D, NSGA-III, and KnEA. However, when the numbers of decision variables and objectives increase, the computation costs of those mentioned algorithms will be unaffordable. To reduce such high computation cost on large-scale many-objective optimization problems, we proposed a two-stage framework. The first stage of the proposed algorithm combines with a multi-tasking optimization strategy and a bi-directional search strategy, where the original problem is reformulated as a multi-tasking optimization problem in the decision space to enhance the convergence. To improve the diversity, in the second stage, the proposed algorithm applies multi-tasking optimization to a number of sub-problems based on reference points in the objective space. In this paper, to show the effectiveness of the proposed algorithm, we test the algorithm on the DTLZ and LSMOP problems and compare it with existing algorithms, and it outperforms other compared algorithms in most cases and shows disadvantage on both convergence and diversity.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 625
Author(s):  
Xinyu Wu ◽  
Rui Guo ◽  
Xilong Cheng ◽  
Chuntian Cheng

Simulation-optimization methods are often used to derive operation rules for large-scale hydropower reservoir systems. The solution of the simulation-optimization models is complex and time-consuming, for many interconnected variables need to be optimized, and the objective functions need to be computed through simulation in many periods. Since global solutions are seldom obtained, the initial solutions are important to the solution quality. In this paper, a two-stage method is proposed to derive operation rules for large-scale hydropower systems. In the first stage, the optimal operation model is simplified and solved using sampling stochastic dynamic programming (SSDP). In the second stage, the optimal operation model is solved by using a genetic algorithm, taking the SSDP solution as an individual in the initial population. The proposed method is applied to a hydropower system in Southwest China, composed of cascaded reservoir systems of Hongshui River, Lancang River, and Wu River. The numerical result shows that the two-stage method can significantly improve the solution in an acceptable solution time.


Sign in / Sign up

Export Citation Format

Share Document