scholarly journals Probabilistic screening and behavior of solar cells under Gaussian parametric uncertainty using polynomial chaos representation model

Author(s):  
Akshit Samadhiya ◽  
Kumari Namrata

AbstractThe paper presents a hierarchical polynomial chaos expansion-based probabilistic approach to analyze the single diode solar cell model under Gaussian parametric uncertainty. It is important to analyze single diode solar cell model response under random events or factors due to uncertainty propagation. The optimal values of five electrical parameters associated with the single diode model are estimated using six deterministic optimization techniques through the root-mean-square minimization approach. Values corresponding to the best objective function response are further utilized to describe the probabilistic design space of each random electrical parameter under uncertainty. Adequate samples of each parameter corresponding Gaussian uncertain distribution are generated using Latin hypercube sampling. Furthermore, a multistage probabilistic approach is adopted to evaluate the model response using low-cost polynomial chaos series expansion and perform global sensitivity analysis under specified Gaussian distribution. Coefficients of polynomial basis functions are calculated using least square and least angle regression techniques. Unlike the highly non-linear and complex single diode representation of solar cells, the polynomial chaos expansion model provides a low computational burden and reduced complexity. To ensure reproducibility, probabilistic output response computed using proposed polynomial chaos expansion model is compared with the true model response. Finally, a multidimensional sensitivity analysis is performed through Sobol decomposition of polynomial chaos series representation to quantify the contribution of each parameter to the variance of the probabilistic response. The validation and assessment result shows that the output probabilistic response of the solar cell under Gaussian parametric uncertainty correlates to a Rayleigh probability distribution function. Output response is characterized by a mean value of 0.0060 and 0.0760 for RTC France and Solarex MSX83 solar cells, respectively. The standard deviation of $$ \pm $$ ± 0.0034 and $$ \pm $$ ± 0.0052 was observed in the probabilistic response for RTC France and Solarex MSX83 solar cells, respectively.

2020 ◽  
Vol 1 (3) ◽  
pp. 153-173
Author(s):  
Jeongeun Son ◽  
Dongping Du ◽  
Yuncheng Du

Uncertainty quantification (UQ) is an important part of mathematical modeling and simulations, which quantifies the impact of parametric uncertainty on model predictions. This paper presents an efficient approach for polynomial chaos expansion (PCE) based UQ method in biological systems. For PCE, the key step is the stochastic Galerkin (SG) projection, which yields a family of deterministic models of PCE coefficients to describe the original stochastic system. When dealing with systems that involve nonpolynomial terms and many uncertainties, the SG-based PCE is computationally prohibitive because it often involves high-dimensional integrals. To address this, a generalized dimension reduction method (gDRM) is coupled with quadrature rules to convert a high-dimensional integral in the SG into a few lower dimensional ones that can be rapidly solved. The performance of the algorithm is validated with two examples describing the dynamic behavior of cells. Compared to other UQ techniques (e.g., nonintrusive PCE), the results show the potential of the algorithm to tackle UQ in more complicated biological systems.


Sign in / Sign up

Export Citation Format

Share Document