scholarly journals Characteristics and geological significance of germanium in Taiyuan coal formation of Huainan Coalfield, Anhui, China

2020 ◽  
Vol 7 (4) ◽  
pp. 662-675
Author(s):  
Dun Wu ◽  
Wenyong Zhang ◽  
Guijian Liu ◽  
Run Zhan ◽  
Guangqing Hu

AbstractHN-1# is the first fully working coring well of the Taiyuan Formation (Ty) in the Huinan Coalfield and exploration studies are currently underway on the associated resources of the coal-bearing strata. The HN-1# well is located in the Fufeng thrust nappe structural belt in the south of the Huainan Coalfield. Three coal samples from the Ty were collected from HN-1# and inductively-coupled plasma mass spectrometry and inductively-coupled plasma atomic emission spectrometry were used to determine the Ge content of each sample. Based on proximate and ultimate analyses, microscopy data, and analyses of the ash products, some important findings were made. The Ty coal samples had a relatively high total sulfur (St,d) content (4.24%), thus the coal was considered to be a lower ranked coal (high volatility bituminous coal), which also had a low coal ash composition index (k, 1.87). Collodetrinite was the main submaceral of the Ty coal. Small amounts of pyrite particles were found in the coal seams of the Ty, while the contents of pyrite and algae in the top and bottom sections of the coal seam were relatively high, which meant that the swampy peat conditions which existed during the formation of the coal seams were affected by seawater; also the degree of mineralization of the coal seam was relatively high, which is consistent with reducing conditions in a coastal environment setting. Atomic force microscopy (AFM) experiments showed that the modes of occurrence of Ge in the Ty coal were mainly those for organic-bound and adsorbed Ge species. The organic carbon isotope values for the Ty coal ranged from − 24.1‰ to − 23.8‰, with an average value of − 24.0‰, which is equivalent to the value for terrestrial plants (average value − 24.0‰). The Ge content of the Ty coal was 13.57 mg/kg. The Ge content was negatively correlated with volatile matter and the ash yield.

2020 ◽  
Vol 86 (5) ◽  
pp. 16-21
Author(s):  
T. A. Karimova ◽  
G. L. Buchbinder ◽  
S. V. Kachin

Calibration by the concentration ratio provides better metrological characteristics compared to other calibration modes when using the inductively coupled plasma atomic emission spectrometry (ICP-AES) for analysis of geological samples and technical materials on their base. The main reasons for the observed improvement are: i) elimination of the calibration error of measuring vessels and the error of weighing samples of the analyzed materials from the total error of the analysis; ii) high intensity of the lines of base element; and iii) higher accuracy of measuring the ratio of intensities compared to that of measuring the absolute intensities. Calcium oxide is better suited as a base when using calibration by the concentration ratio in analysis of carbonate rocks, technical materials, slags containing less than 20% SiO2 and more than 20% CaO. An equation is derived to calculate the content of components determined in carbonate materials when using calibration by the concentration ratio. A method of ICP-AES with calibration by the concentration ratio is developed for determination of CaO (in the range of contents 20 – 100%), SiO2 (2.0 – 35%), Al2O3 (0.1 – 30%), MgO (0.1 – 20%), Fe2O3 (0.5 – 40%), Na2O (0.1 – 15%), K2O (0.1 – 5%), P2O5 (0.001 – 2%), MnO (0.01 – 2%), TiO2 (0.01 – 2.0%) in various carbonate materials. Acid decomposition of the samples in closed vessels heated in a HotBlock 200 system is proposed. Correctness of the procedure is confirmed in analysis of standard samples of rocks. The developed procedure was used during the interlaboratory analysis of the standard sample of slag SH17 produced by ZAO ISO (Yekaterinburg, Russia).


Minerals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 133
Author(s):  
Henryk R. Parzentny ◽  
Leokadia Róg

It is supposed that the determination of the content and the mode of occurrence of ecotoxic elements (EE) in feed coal play the most significant role in forecasting distribution of EE in the soil and plants in the vicinity of power stations. Hence, the aim of the work was to analyze the properties of the feed coal, the combustion residues, and the topsoil which are reached by EE together with dust from power stations. The mineral and organic phases, which are the main hosts of EE, were identified by microscopy, X-ray powder diffraction, inductively coupled plasma atomic emission spectrometry, and scanning electron microscope with an energy dispersive X-ray methods. The highest content of elements was observed in the Oi and Oe subhorizons of the topsoil. Their hosts are various types of microspheres and char, emitted by power stations. In the areas of long-term industrial activity, there are also sharp-edged grains of magnetite emitted in the past by zinc, lead, and ironworks. The enrichment of the topsoil with these elements resulted in the increase in the content of EE, by between 0.2 times for Co; and 41.0 times for Cd in the roots of Scots pine, common oak and undergrowth, especially in the rhizodermis and the primary cortex and, more seldom, in the axle roller and cortex cells.


Sign in / Sign up

Export Citation Format

Share Document