A New Interval-valued 2-Tuple Linguistic Bonferroni Mean Operator and Its Application to Multiattribute Group Decision Making

2016 ◽  
Vol 19 (1) ◽  
pp. 86-108 ◽  
Author(s):  
Xi Liu ◽  
Zhifu Tao ◽  
Huayou Chen ◽  
Ligang Zhou
2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Ya-ming Shi ◽  
Jian-min He

We investigate and propose two new Bonferroni means, that is, the optimized weighted BM (OWBM) and the generalized optimized weighted BM (GOWBM), whose characteristics are to reflect the preference and interrelationship of the aggregated arguments and can satisfy the basic properties of the aggregation techniques simultaneously. Further, we propose the interval-valued intuitionistic fuzzy optimized weighted Bonferroni mean (IIFOWBM) and the generalized interval-valued intuitionistic fuzzy optimized weighted Bonferroni mean (GIIFOWBM) and detailed study of their desirable properties such as idempotency, monotonicity, transformation, and boundary. Finally, based on IIFOWBM and GIIFOWBM, we give an approach to group decision making under the interval-valued intuitionistic fuzzy environment and utilize a practical case involving the assessment of a set of agroecological regions in Hubei Province, China, to illustrate the developed methods.


Mathematics ◽  
2021 ◽  
Vol 9 (13) ◽  
pp. 1489
Author(s):  
Shahzad Faizi ◽  
Wojciech Sałabun ◽  
Nisbha Shaheen ◽  
Atiq ur Rehman ◽  
Jarosław Wątróbski

Ambiguous and uncertain facts can be handled using a hesitant 2-tuple linguistic set (H2TLS), an important expansion of the 2-tuple linguistic set. The vagueness and uncertainty of data can be grabbed by using aggregation operators. Therefore, aggregation operators play an important role in computational processes to merge the information provided by decision makers (DMs). Furthermore, the aggregation operator is a potential mechanism for merging multisource data which is synonymous with cooperative preference. The aggregation operators need to be studied and analyzed from various perspectives to represent complex choice situations more readily and capture the diverse experiences of DMs. In this manuscript, we propose some valuable operational laws for H2TLS. These new operational laws work through the individual aggregation of linguistic words and the collection of translation parameters. We introduced a hesitant 2-tuple linguistic weighted average (H2TLWA) operator to solve multi-criteria group decision-making (MCGDM) problems. We also define hesitant 2-tuple linguistic Bonferroni mean (H2TLBM) operator, hesitant 2-tuple linguistic geometric Bonferroni mean (H2TLGBM) operator, hesitant 2-tuple linguistic Heronian mean (H2TLHM) operator, and a hesitant 2-tuple linguistic geometric Heronian mean (H2TLGHM) operator based on the novel operational laws proposed in this paper. We define the aggregation operators for addition, subtraction, multiplication, division, scalar multiplication, power and complement with their respective properties. An application example and comparison analysis were examined to show the usefulness and practicality of the work.


Mathematics ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 342 ◽  
Author(s):  
Krishankumar ◽  
Ravichandran ◽  
Ahmed ◽  
Kar ◽  
Peng

As a powerful generalization to fuzzy set, hesitant fuzzy set (HFS) was introduced, which provided multiple possible membership values to be associated with a specific instance. But HFS did not consider occurrence probability values, and to circumvent the issue, probabilistic HFS (PHFS) was introduced, which associates an occurrence probability value with each hesitant fuzzy element (HFE). Providing such a precise probability value is an open challenge and as a generalization to PHFS, interval-valued PHFS (IVPHFS) was proposed. IVPHFS provided flexibility to decision makers (DMs) by associating a range of values as an occurrence probability for each HFE. To enrich the usefulness of IVPHFS in multi-attribute group decision-making (MAGDM), in this paper, we extend the Muirhead mean (MM) operator to IVPHFS for aggregating preferences. The MM operator is a generalized operator that can effectively capture the interrelationship between multiple attributes. Some properties of the proposed operator are also discussed. Then, a new programming model is proposed for calculating the weights of attributes using DMs’ partial information. Later, a systematic procedure is presented for MAGDM with the proposed operator and the practical use of the operator is demonstrated by using a renewable energy source selection problem. Finally, the strengths and weaknesses of the proposal are discussed in comparison with other methods.


Sign in / Sign up

Export Citation Format

Share Document