The linear assignment method for multicriteria group decision making based on interval-valued Pythagorean fuzzy Bonferroni mean

2018 ◽  
Vol 33 (11) ◽  
pp. 2101-2138 ◽  
Author(s):  
Decui Liang ◽  
Adjei Peter Darko ◽  
Zeshui Xu ◽  
Wei Quan
2018 ◽  
Vol 24 (3) ◽  
pp. 1125-1148 ◽  
Author(s):  
Seyed Hossein RAZAVI HAJIAGHA ◽  
Meisam SHAHBAZI ◽  
Hannan AMOOZAD MAHDIRAJI ◽  
Hossein PANAHIAN

Decision makers usually prefer to express their preferences by linguistic variables. Classic fuzzy sets allowed expressing these preferences using a single linguistic value. Considering inevitable hesitancy of decision makers, hesitant fuzzy linguistic term sets allowed them to express individual evaluation using several linguistic values. Therefore, these sets improve the ability of humans to determine believes using their own language. Considering this feature, in this paper a method upon linear assignment method is proposed to solve group decision making problems using this kind of information, when criteria weights are known or unknown. The performance of the proposed method is illustrated in a numerical example and the results are compared with other methods to delineate the models efficiency. Following a logical and well-known mathematical logic along with simplicity of execution are the main advantages of the proposed method.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Ya-ming Shi ◽  
Jian-min He

We investigate and propose two new Bonferroni means, that is, the optimized weighted BM (OWBM) and the generalized optimized weighted BM (GOWBM), whose characteristics are to reflect the preference and interrelationship of the aggregated arguments and can satisfy the basic properties of the aggregation techniques simultaneously. Further, we propose the interval-valued intuitionistic fuzzy optimized weighted Bonferroni mean (IIFOWBM) and the generalized interval-valued intuitionistic fuzzy optimized weighted Bonferroni mean (GIIFOWBM) and detailed study of their desirable properties such as idempotency, monotonicity, transformation, and boundary. Finally, based on IIFOWBM and GIIFOWBM, we give an approach to group decision making under the interval-valued intuitionistic fuzzy environment and utilize a practical case involving the assessment of a set of agroecological regions in Hubei Province, China, to illustrate the developed methods.


2013 ◽  
Vol 2013 ◽  
pp. 1-16 ◽  
Author(s):  
Chunqiao Tan ◽  
Xiaohong Chen

An effective decision making approach based on VIKOR and Choquet integral is developed to solve multicriteria group decision making problem with conflicting criteria and interdependent subjective preference of decision makers in a fuzzy environment where preferences of decision makers with respect to criteria are represented by interval-valued intuitionistic fuzzy sets. First, an interval-valued intuitionistic fuzzy Choquet integral operator is given. Some of its properties are investigated in detail. The extended VIKOR decision procedure based on the proposed operator is developed for solving the multicriteria group decision making problem where the interactive criteria weight is measured by Shapley value. An illustrative example is given for demonstrating the applicability of the proposed decision procedure for solving the multi-criteria group decision making problem in interval-valued intuitionistic fuzzy environment.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Jun Ye ◽  
Shigui Du ◽  
Rui Yong

The notion of multifuzzy sets (MFSs) or multi-interval-valued fuzzy sets (MIVFSs) provides a new method to represent some problems with a sequence of the different and/or same fuzzy/interval-valued fuzzy membership values of an element to the set. Then, a fuzzy cubic set (FCS) consists of a certain part (a fuzzy value) and an uncertain part (an interval-valued fuzzy value) but cannot represent hybrid information of both MFS and MIVFS. To adequately depict the opinion of several experts/decision-makers by using a union/sequence of the different and/or same fuzzy cubic values for an object assessed in group decision-making (GDM) problems, this paper proposes a multifuzzy cubic set (MFCS) notion as the conceptual extension of FCS to express the hybrid information of both MFS and MIVFS in the fuzzy setting of both uncertainty and certainty. Then, we propose three correlation coefficients of MFCSs and then introduce correlation coefficients of MFSs and MIVFSs as special cases of the three correlation coefficients of MFCSs. Further, the multicriteria GDM methods using three weighted correlation coefficients of MFCSs are developed under the environment of MFCSs, which contains the MFS and MIVFS GDM methods. Lastly, these multicriteria GDM methods are applied in an illustrative example on the selection problem of equipment suppliers; then their decision results and comparative analysis indicate that the developed GDM methods are more practicable and effective and reflect that either different correlation coefficients or different information expressions can also impact on the ranking of alternatives. Therefore, this study indicates the main contribution of the multifuzzy cubic information expression, correlation coefficients, and GDM methods in the multifuzzy setting of both uncertainty and certainty.


Sign in / Sign up

Export Citation Format

Share Document