Cyclic Pursuit-Fuzzy PD Control Method for Multi-agent Formation Control in 3D Space

Author(s):  
Huixin Yang ◽  
Yueying Wang
2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
Junfeng Wu ◽  
Wanying Zhang ◽  
Shengda Wang

Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2295
Author(s):  
Huifen Hong ◽  
He Wang

This paper investigates the fixed-time formation (FixF) control problem for second-order multi-agent systems (MASs), where each agent is subject to disturbance and the communication network is general directed. First, a FixF protocol is presented based on the backstepping technique, where the distributed cooperative variable structure control method is utilized to handle the bounded disturbances. Then, to remove the dependence of control gains on the global information, a practical adaptive FixF control is presented, where the MASs can achieve formation with a bounded error within fixed time. Finally, a numerical example is presented to validate the theoretical result.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Xiaohua Zhang ◽  
Junli Gao ◽  
Wenfeng Zhang ◽  
Tao Zeng ◽  
Liping Ye

This paper presents the disturbance observers-based distributed formation control for multiple quadrotor aircrafts with external disturbances and uncertain parameters using multi-agent theory and finite-time control method. Firstly, the finite-time disturbance observers are proposed to handle the external disturbances on the position-loop. Similarly, when there are both the uncertain parameters and external disturbances on the attitude-loop, the finite-time disturbance observers are designed to estimate the total lump disturbances. By skillfully using homogeneous system theory, Lyapunov theory, and multi-agent theory, the distributed formation control algorithms are developed. Finally, through simulations, the efficiency of the proposed method (including the convergence rate and disturbance rejection) is verified.


Electronics ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 319
Author(s):  
Julian Scharnagl ◽  
Florian Kempf ◽  
Klaus Schilling

Control methods that guarantee stability in the presence of uncertainties are mandatory in space applications. Further, distributed control approaches are beneficial in terms of scalability and to achieve common goals, especially in multi-agent setups like formation control. This paper presents a combination of robust H ∞ control and distributed control using the consensus approach by deriving a distributed consensus-based generalized plant description that can be used in H ∞ synthesis. Special focus was set towards space applications, namely SFF. The presented results show the applicability of the developed distributed robust control method to a simple, though realistic space scenario, namely a spaceborne distributed telescope. By using this approach, an arbitrary number of satellites/agents can be controlled towards an arbitrary formation geometry. Because of the combination with robust H ∞ control, the presented method satisfies the high stability and robustness demands as found e.g., in space applications.


Sign in / Sign up

Export Citation Format

Share Document