An Optimization Method for the Initial Parameters Selection of Fuzzy Cerebellar Model Neural Networks in Parametric Fault Diagnosis

2020 ◽  
Vol 22 (7) ◽  
pp. 2071-2082
Author(s):  
Qiongbin Lin ◽  
Shican Chen ◽  
Chih-Min Lin
Algorithms ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 163
Author(s):  
Yaru Li ◽  
Yulai Zhang ◽  
Yongping Cai

The selection of the hyper-parameters plays a critical role in the task of prediction based on the recurrent neural networks (RNN). Traditionally, the hyper-parameters of the machine learning models are selected by simulations as well as human experiences. In recent years, multiple algorithms based on Bayesian optimization (BO) are developed to determine the optimal values of the hyper-parameters. In most of these methods, gradients are required to be calculated. In this work, the particle swarm optimization (PSO) is used under the BO framework to develop a new method for hyper-parameter optimization. The proposed algorithm (BO-PSO) is free of gradient calculation and the particles can be optimized in parallel naturally. So the computational complexity can be effectively reduced which means better hyper-parameters can be obtained under the same amount of calculation. Experiments are done on real world power load data,where the proposed method outperforms the existing state-of-the-art algorithms,BO with limit-BFGS-bound (BO-L-BFGS-B) and BO with truncated-newton (BO-TNC),in terms of the prediction accuracy. The errors of the prediction result in different models show that BO-PSO is an effective hyper-parameter optimization method.


Author(s):  
Zhu Fang ◽  
Wei Junfang

The performance of support vector mchine (SVM) depends on the selection of model parameters, however, the selection of SVM model parameters more depends on the empirical value. According to the above deficiency, this paper proposed a parameters optimization method of support vector machine based on immune memory clone strategy (IMC). This method can solve the multi-peak model parameters selection problem better which is introduced by n-folded cross-verification. Tests on standard datasets show that this method has higher precision and faster optimization speed compared with other four methods. Then the proposed method was applied to bus passenger flow counting. The experimental results show that the method reposed in this paper obtains higher classification accuracy.


2019 ◽  
Vol 66 (10) ◽  
pp. 8104-8115 ◽  
Author(s):  
Qiongbin Lin ◽  
Shican Chen ◽  
Chih-Min Lin

Author(s):  
Gang Liu ◽  
Zongming Huang ◽  
Yimin Shao ◽  
Shangbin Weng

We present a new updating parameters (UPs) selection method to tackle the bottleneck created by having too many UPs and limited measured data in model updating processing. While the model updating is performed by parameter optimization, an ill-conditioned numerical problem may be encountered or the reliability of the result may be unacceptable if too many parameters are used. The selection of UPs thus becomes a key issue, especially for long-span bridges with finite element models that should be divided into at least hundreds of element numbers. A new method is introduced to reduce the number of UPs and retain their physical significance. In this method, original UPs are described by a few macro-parameters based on shape functions. The model subsequently is updated by a normal optimization algorithm, such as the first-order optimization method. Based on a bridge with a three-span continuous beam and a long-span tie-arch, the optimal effects are investigated, with or without a shape function and using different types of shape functions. The results indicate that the effect of the modal updating based on a shape function is more robust than without shape function and the effect of a linear shape function is better than that of a constant value shape function.


2012 ◽  
Vol 241-244 ◽  
pp. 1618-1621
Author(s):  
Fang Zhu ◽  
Jun Fang Wei

The performance of support vector machine (SVM) depends on the selection of model parameters, however, the selection of SVM model parameters more depends on the empirical value. According to the above deficiency, this paper proposed a parameters optimization method of support vector machine based on immune memory clone strategy (IMC). This method can solve the multi-peak model parameters selection problem better which is introduced by n-folded cross-verification and automatic acquire the optimum model parameters. Proved by the simulation results on standard data, this method has higher precision and faster optimization speed. In a word, it can be used as an effective and feasible SVM parameters optimization method.


2013 ◽  
Vol 06 (05) ◽  
pp. 1350036 ◽  
Author(s):  
HUIYAN JIANG ◽  
LINGBO ZOU

Support vector machine (SVM) is a widely used tool in the field of image processing and pattern recognition. However, the parameters selection of SVMs is a dilemma in disease identification and clinical diagnosis. This paper proposed an improved parameter optimization method based on traditional particle swarm optimization (PSO) algorithm by changing the fitness function in the traditional evolution process of SVMs. Then, this PSO method was combined with simulated annealing global searching algorithm to avoid local convergence that traditional PSO algorithms usually run into. And this method has achieved better results which reflected in the receiver-operating characteristic curves in medical images classification and has gained considerable identification accuracy in clinical disease detection.


Author(s):  
Zhu Fang ◽  
Wei Junfang

The performance of support vector machine (SVM) depends on the selection of model parameters, however, the selection of SVM model parameters more depends on the empirical value. According to the deficiency, this paper proposes a parameters optimization method of support vector machine based on immune memory clone strategy (IMC). This method can solve the multi-peak model parameters selection problem better which is introduced by n-folded cross-verification. Tests on standard datasets show that this method has higher precision and faster optimization speed compared with other four methods. The proposed method was applied to bus passenger flow counting. The experimental results show that the method reposed in this paper obtains higher classification accuracy.


2012 ◽  
Vol 6-7 ◽  
pp. 694-699
Author(s):  
Fang Zhu ◽  
Jun Fang Wei

The performance of support vector machine (SVM) depends on the selection of model parameters, however, the selection of SVM model parameters more depends on the empirical value. According to the above deficiency, this paper proposed a parameters optimization method of support vector machine based on immune memory clone strategy (IMC). This method can solve the multi-peak model parameters selection problem better which is introduced by n-folded cross-verification. Tests on standard datasets show that this method has higher precision and faster optimization speed compared with other four methods. Then the proposed method was applied to bus passenger flow counting. The experimental results show that the method reposed in this paper obtains higher classification accuracy.


Sign in / Sign up

Export Citation Format

Share Document