An Efficient Approach of Homotopic Asymptotic for System Differential Equations of Non Integer Order

Author(s):  
R. Darzi ◽  
B. Agheli
Author(s):  
Akbar Zada ◽  
Sartaj Ali ◽  
Tongxing Li

AbstractIn this paper, we study an implicit sequential fractional order differential equation with non-instantaneous impulses and multi-point boundary conditions. The article comprehensively elaborate four different types of Ulam’s stability in the lights of generalized Diaz Margolis’s fixed point theorem. Moreover, some sufficient conditions are constructed to observe the existence and uniqueness of solutions for the proposed model. The proposed model contains both the integer order and fractional order derivatives. Thus, the exponential function appearers in the solution of the proposed model which will lead researchers to study fractional differential equations with well known methods of integer order differential equations. In the last, few examples are provided to show the applicability of our main results.


2010 ◽  
Vol 65 (11) ◽  
pp. 935-949 ◽  
Author(s):  
Mehdi Dehghan ◽  
Jalil Manafian ◽  
Abbas Saadatmandi

In this paper, the homotopy analysis method is applied to solve linear fractional problems. Based on this method, a scheme is developed to obtain approximation solution of fractional wave, Burgers, Korteweg-de Vries (KdV), KdV-Burgers, and Klein-Gordon equations with initial conditions, which are introduced by replacing some integer-order time derivatives by fractional derivatives. The fractional derivatives are described in the Caputo sense. So the homotopy analysis method for partial differential equations of integer order is directly extended to derive explicit and numerical solutions of the fractional partial differential equations. The solutions are calculated in the form of convergent series with easily computable components. The results of applying this procedure to the studied cases show the high accuracy and efficiency of the new technique.


2018 ◽  
Vol 13 (8) ◽  
Author(s):  
F. Mohammadi ◽  
J. A. Tenreiro Machado

This paper compares the performance of Legendre wavelets (LWs) with integer and noninteger orders for solving fractional nonlinear Fredholm integro-differential equations (FNFIDEs). The generalized fractional-order Legendre wavelets (FLWs) are formulated and the operational matrix of fractional derivative in the Caputo sense is obtained. Based on the FLWs, the operational matrix and the Tau method an efficient algorithm is developed for FNFIDEs. The FLWs basis leads to more efficient and accurate solutions of the FNFIDE than the integer-order Legendre wavelets. Numerical examples confirm the superior accuracy of the proposed method.


Author(s):  
Ravshan Ashurov ◽  
Alberto Cabada ◽  
Batirkhan Turmetov

AbstractOne of the effective methods to find explicit solutions of differential equations is the method based on the operator representation of solutions. The essence of this method is to construct a series, whose members are the relevant iteration operators acting to some classes of sufficiently smooth functions. This method is widely used in the works of B. Bondarenko for construction of solutions of differential equations of integer order. In this paper, the operator method is applied to construct solutions of linear differential equations with constant coefficients and with Caputo fractional derivatives. Then the fundamental solutions are used to obtain the unique solution of the Cauchy problem, where the initial conditions are given in terms of the unknown function and its derivatives of integer order. Comparison is made with the use of Mikusinski operational calculus for solving similar problems.


2016 ◽  
Vol 5 (1) ◽  
pp. 86
Author(s):  
Naser Al-Qutaifi

<p>The idea of replacing the first derivative in time by a fractional derivative of order , where , leads to a fractional generalization of any partial differential equations of integer order. In this paper, we obtain a relationship between the solution of the integer order equation and the solution of its fractional extension by using the Laplace transform method.</p>


Sign in / Sign up

Export Citation Format

Share Document