scholarly journals Unraveling Passivation Mechanism of Imidazolium-Based Ionic Liquids on Inorganic Perovskite to Achieve Near-Record-Efficiency CsPbI2Br Solar Cells

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Jie Xu ◽  
Jian Cui ◽  
Shaomin Yang ◽  
Yu Han ◽  
Xi Guo ◽  
...  

AbstractThe application of ionic liquids in perovskite has attracted wide-spread attention for its astounding performance improvement of perovskite solar cells (PSCs). However, the detailed mechanisms behind the improvement remain mysterious. Herein, a series of imidazolium-based ionic liquids (IILs) with different cations and anions is systematically investigated to elucidate the passivation mechanism of IILs on inorganic perovskites. It is found that IILs display the following advantages: (1) They form ionic bonds with Cs+ and Pb2+ cations on the surface and at the grain boundaries of perovskite films, which could effectively heal/reduce the Cs+/I− vacancies and Pb-related defects; (2) They serve as a bridge between the perovskite and the hole-transport-layer for effective charge extraction and transfer; and (3) They increase the hydrophobicity of the perovskite surface to further improve the stability of the CsPbI2Br PSCs. The combination of the above effects results in suppressed non-radiative recombination loss in CsPbI2Br PSCs and an impressive power conversion efficiency of 17.02%. Additionally, the CsPbI2Br PSCs with IILs surface modification exhibited improved ambient and light illumination stability. Our results provide guidance for an in-depth understanding of the passivation mechanism of IILs in inorganic perovskites."Image missing"

2020 ◽  
Vol 4 (1) ◽  
Author(s):  
Meiying Liang ◽  
Adnan Ali ◽  
Abdelhak Belaidi ◽  
Mohammad Istiaque Hossain ◽  
Oskar Ronan ◽  
...  

Abstract Organometallic-halide perovskite solar cells (PSCs) are emerging as the most promising next generation solar cell devices. However, the stability is still the main bottleneck of their further development. Here, we introduce two-dimensional (2D) molybdenum chalcogenides (MoS2 and MoSe2) (MCs) nanoflakes as a buffer layer between perovskite layer and hole transport layer (HTL) to improve the stability of the organometallic-halide PSCs. 2D MCs are obtained via liquid-phase exfoliated (LPE) approach, and Glass/FTO/compact-TiO2/ mesoporous-TiO2/FA85MA15PbI85Br15/2D MCs/Spiro-OMeTAD/Au structured solar cell devices are designed and fabricated. In this system, 2D MCs act both as a protective layer and an additional HTL of PSCs. This kind of PSCs achieve a relatively high-power conversion efficiency (PCE) of 14.9%, along with a much longer lifetime stability compared to the standard PSCs. After 1 h, PCE of the PSC adding a 2D MCs buffer layer could maintain 93.1% of initial value, while the PCE of the standard PSC dropped dramatically to 78.2% of initial efficiency. Our results pave the way towards the implementation of 2D MCs nanoflakes as a material able to boost the shelf life of PSCs and further provide the opportunity to fabricate large-area PSCs in view of their commercialization.


2015 ◽  
Vol 3 (31) ◽  
pp. 15996-16004 ◽  
Author(s):  
Qiang Luo ◽  
Ye Zhang ◽  
Chengyang Liu ◽  
Jianbao Li ◽  
Ning Wang ◽  
...  

A p-type and highly conductive reduced graphene oxide combined with dopant-free spiro-OMeTAD as a hole transport layer improves the stability of perovskite solar cells.


2020 ◽  
Vol 7 ◽  

Perovskite-based solar cells have attracted a great deal of attention due to their rapid increase in power conversion, which has reached to 24.2%. The performance of perovskite solar cells depends on several parameters such as the absorber layer, the electron transport layer, the hole transport layer, and the electrodes, and the deposition technics. Moisture, oxygen, tem-perature and light intensity are environmental factors which can influence the stability of the photovoltaic devices and dete-riorate the performance. Also, the toxicity, caused by the presence of lead (Pb) content, is an obstacle for the commerciali-zation of the perovskite solar cells. The use of free-lead absorber layer is discussed, and solution to improve performances and stability of perovskite solar cells are proposed.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 5115
Author(s):  
Marina M. Tepliakova ◽  
Alexandra N. Mikheeva ◽  
Pavel A. Somov ◽  
Eugene S. Statnik ◽  
Alexander M. Korsunsky ◽  
...  

In the last decade, perovskite photovoltaics gained popularity as a potential rival for crystalline silicon solar cells, which provide comparable efficiency for lower fabrication costs. However, insufficient stability is still a bottleneck for technology commercialization. One of the key aspects for improving the stability of perovskite solar cells (PSCs) is encapsulating the photoactive material with the hole-transport layer (HTL) with low gas permeability. Recently, it was shown that the double HTL comprising organic and inorganic parts can perform the protective function. Herein, a systematic investigation and comparison of four double HTLs incorporating polytriarylamine and thermally evaporated transition metal oxides in the highest oxidation state are presented. In particular, it was shown that MoOx, WOx, and VOx-based double HTLs provided stable performance of PSCs for 1250 h, while devices with NbOx lost 30% of their initial efficiency after 1000 h. Additionally, the encapsulating properties of all four double HTLs were studied in trilayer stacks with HTL covering perovskite, and insignificant changes in the absorber composition were registered after 1000 h under illumination. Finally, it was demonstrated using ToF-SIMS that the double HTL prevented the migration of perovskite volatile components within the structure. Our findings pave the way towards improved PSC design that ensures their long-term operational stability.


Nanoscale ◽  
2018 ◽  
Vol 10 (23) ◽  
pp. 11043-11051 ◽  
Author(s):  
Guanchen Liu ◽  
Xiaoyin Xie ◽  
Zhihai Liu ◽  
Guanjian Cheng ◽  
Eun-Cheol Lee

We introduced alcohol based vapor annealing of the hole transport layer for fabricating high-performance inverted perovskite solar cells.


Sign in / Sign up

Export Citation Format

Share Document