scholarly journals Calibration and Finite Element Implementation of an Energy-Based Material Model for Shape Memory Alloys

2016 ◽  
Vol 2 (3) ◽  
pp. 247-253 ◽  
Author(s):  
Philipp Junker ◽  
Klaus Hackl
2018 ◽  
Vol 29 (14) ◽  
pp. 2954-2965 ◽  
Author(s):  
Hamid Khodaei ◽  
Patrick Terriault

Shape memory alloys are used in ever-increasing numbers of applications, such as implants made of porous shape memory alloys, where the material is subjected to complex loading conditions with various loading paths. Finite element simulation of such parts requires utilizing a constitutive model that is able to capture the multiaxial and path-dependent behavior of shape memory alloys. The main objective of this article is to investigate the accuracy of the constitutive model implemented in current commercial finite element software such as Ansys in predicting the shape memory alloys mechanical response under different multiaxial loading paths. To this end, several isothermal tests were conducted on thin-walled NiTi tubes with uniaxial, as well as multiaxial, path-varying loadings. The performance of the material model within Ansys was then investigated by finite element modeling of the sample tubes and performing simulations of the tests. Comparing the finite element results with experimental data, it was observed that while this model provided a close prediction of the uniaxial tensile superelastic response, it was not able to reproduce the multiaxial and path-dependent behavior of the shape memory alloy samples with sufficient accuracy. A brief discussion of the reasons behind the inaccuracy of the current model and potentially promising models for future investigation are provided.


PAMM ◽  
2017 ◽  
Vol 17 (1) ◽  
pp. 479-480
Author(s):  
Johanna Waimann ◽  
Philipp Junker ◽  
Klaus Hackl

2010 ◽  
Vol 77 (6) ◽  
Author(s):  
Min Kyoo Kang ◽  
Rui Huang

A hydrogel consists of a cross-linked polymer network and solvent molecules. Depending on its chemical and mechanical environment, the polymer network may undergo enormous volume change. The present work develops a general formulation based on a variational approach, which leads to a set of governing equations coupling mechanical and chemical equilibrium conditions along with proper boundary conditions. A specific material model is employed in a finite element implementation, for which the nonlinear constitutive behavior is derived from a free energy function, with explicit formula for the true stress and tangent modulus at the current state of deformation and chemical potential. Such implementation enables numerical simulations of hydrogels swelling under various constraints. Several examples are presented, with both homogeneous and inhomogeneous swelling deformation. In particular, the effect of geometric constraint is emphasized for the inhomogeneous swelling of surface-attached hydrogel lines of rectangular cross sections, which depends on the width-to-height aspect ratio of the line. The present numerical simulations show that, beyond a critical aspect ratio, creaselike surface instability occurs upon swelling.


Sign in / Sign up

Export Citation Format

Share Document