New Spectral Solutions for High Odd-Order Boundary Value Problems via Generalized Jacobi Polynomials

2017 ◽  
Vol 40 (4) ◽  
pp. 1393-1412
Author(s):  
W. M. Abd-Elhameed
2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
W. M. Abd-Elhameed

The main aim of this research article is to develop two new algorithms for handling linear and nonlinear third-order boundary value problems. For this purpose, a novel operational matrix of derivatives of certain nonsymmetric generalized Jacobi polynomials is established. The suggested algorithms are built on utilizing the Galerkin and collocation spectral methods. Moreover, the principle idea behind these algorithms is based on converting the boundary value problems governed by their boundary conditions into systems of linear or nonlinear algebraic equations which can be efficiently solved by suitable solvers. We support our algorithms by a careful investigation of the convergence analysis of the suggested nonsymmetric generalized Jacobi expansion. Some illustrative examples are given for the sake of indicating the high accuracy and efficiency of the two proposed algorithms.


2014 ◽  
Vol 2014 ◽  
pp. 1-11
Author(s):  
W. M. Abd-Elhameed

This paper is concerned with deriving some new formulae expressing explicitly the high-order derivatives of Jacobi polynomials whose parameters difference is one or two of any degree and of any order in terms of their corresponding Jacobi polynomials. The derivatives formulae for Chebyshev polynomials of third and fourth kinds of any degree and of any order in terms of their corresponding Chebyshev polynomials are deduced as special cases. Some new reduction formulae for summing some terminating hypergeometric functions of unit argument are also deduced. As an application, and with the aid of the new introduced derivatives formulae, an algorithm for solving special sixth-order boundary value problems are implemented with the aid of applying Galerkin method. A numerical example is presented hoping to ascertain the validity and the applicability of the proposed algorithms.


1967 ◽  
Vol 15 (3) ◽  
pp. 221-231 ◽  
Author(s):  
K. N. Srivastava

Recently Collins (2) has studied triple series equations involving series of Legendre polynomials. These equations arise in the study of mixed boundary value problems and can be regarded as extensions of the dual series equations considered by Collins in (1).


Author(s):  
Changpin Li ◽  
Fanhai Zeng ◽  
Fawang Liu

AbstractIn this paper, the spectral approximations are used to compute the fractional integral and the Caputo derivative. The effective recursive formulae based on the Legendre, Chebyshev and Jacobi polynomials are developed to approximate the fractional integral. And the succinct scheme for approximating the Caputo derivative is also derived. The collocation method is proposed to solve the fractional initial value problems and boundary value problems. Numerical examples are also provided to illustrate the effectiveness of the derived methods.


Author(s):  
Mustafa Fahri Aktaş ◽  
Devrim Çakmak ◽  
Abdullah Ahmetoğlu

Sign in / Sign up

Export Citation Format

Share Document