scholarly journals Some Algorithms for Solving Third-Order Boundary Value Problems Using Novel Operational Matrices of Generalized Jacobi Polynomials

2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
W. M. Abd-Elhameed

The main aim of this research article is to develop two new algorithms for handling linear and nonlinear third-order boundary value problems. For this purpose, a novel operational matrix of derivatives of certain nonsymmetric generalized Jacobi polynomials is established. The suggested algorithms are built on utilizing the Galerkin and collocation spectral methods. Moreover, the principle idea behind these algorithms is based on converting the boundary value problems governed by their boundary conditions into systems of linear or nonlinear algebraic equations which can be efficiently solved by suitable solvers. We support our algorithms by a careful investigation of the convergence analysis of the suggested nonsymmetric generalized Jacobi expansion. Some illustrative examples are given for the sake of indicating the high accuracy and efficiency of the two proposed algorithms.

2014 ◽  
Vol 2014 ◽  
pp. 1-11
Author(s):  
W. M. Abd-Elhameed

This paper is concerned with deriving some new formulae expressing explicitly the high-order derivatives of Jacobi polynomials whose parameters difference is one or two of any degree and of any order in terms of their corresponding Jacobi polynomials. The derivatives formulae for Chebyshev polynomials of third and fourth kinds of any degree and of any order in terms of their corresponding Chebyshev polynomials are deduced as special cases. Some new reduction formulae for summing some terminating hypergeometric functions of unit argument are also deduced. As an application, and with the aid of the new introduced derivatives formulae, an algorithm for solving special sixth-order boundary value problems are implemented with the aid of applying Galerkin method. A numerical example is presented hoping to ascertain the validity and the applicability of the proposed algorithms.


2017 ◽  
Vol 15 (02) ◽  
pp. 1750083 ◽  
Author(s):  
Anna Napoli ◽  
Waleed M. Abd-Elhameed

The main aim of this paper is to present and analyze a numerical algorithm for the solution of eighth-order boundary value problems. The proposed solutions are spectral and they depend on a new operational matrix of derivatives of certain shifted Legendre polynomial basis, along with the application of the collocation method. The nonzero elements of the operational matrix are expressed in terms of the well-known harmonic numbers. Numerical examples provide favorable comparisons with other existing methods and ascertain the efficiency and applicability of the proposed algorithm.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Umer Saeed

PurposeThe purpose of the present work is to propose a wavelet method for the numerical solutions of Caputo–Hadamard fractional differential equations on any arbitrary interval.Design/methodology/approachThe author has modified the CAS wavelets (mCAS) and utilized it for the solution of Caputo–Hadamard fractional linear/nonlinear initial and boundary value problems. The author has derived and constructed the new operational matrices for the mCAS wavelets. Furthermore, The author has also proposed a method which is the combination of mCAS wavelets and quasilinearization technique for the solution of nonlinear Caputo–Hadamard fractional differential equations.FindingsThe author has proved the orthonormality of the mCAS wavelets. The author has constructed the mCAS wavelets matrix, mCAS wavelets operational matrix of Hadamard fractional integration of arbitrary order and mCAS wavelets operational matrix of Hadamard fractional integration for Caputo–Hadamard fractional boundary value problems. These operational matrices are used to make the calculations fast. Furthermore, the author works out on the error analysis for the method. The author presented the procedure of implementation for both Caputo–Hadamard fractional initial and boundary value problems. Numerical simulation is provided to illustrate the reliability and accuracy of the method.Originality/valueMany scientist, physician and engineers can take the benefit of the presented method for the simulation of their linear/nonlinear Caputo–Hadamard fractional differential models. To the best of the author’s knowledge, the present work has never been proposed and implemented for linear/nonlinear Caputo–Hadamard fractional differential equations.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Xiaoyong Xu ◽  
Fengying Zhou

A collocation method based on the second kind Chebyshev wavelets is proposed for the numerical solution of eighth-order two-point boundary value problems (BVPs) and initial value problems (IVPs) in ordinary differential equations. The second kind Chebyshev wavelets operational matrix of integration is derived and used to transform the problem to a system of algebraic equations. The uniform convergence analysis and error estimation for the proposed method are given. Accuracy and efficiency of the suggested method are established through comparing with the existing quintic B-spline collocation method, homotopy asymptotic method, and modified decomposition method. Numerical results obtained by the present method are in good agreement with the exact solutions available in the literatures.


Author(s):  
Firdous A. Shah ◽  
Rustam Abass

AbstractIn this article, we develop an accurate and efficient wavelet-based collocation method for solving both linear and nonlinear singularly perturbed boundary-value problems that arise in fluid mechanics. The properties of the Haar wavelet expansions together with operational matrix of integration are used to convert the underlying problems into systems of algebraic equations which can be efficiently solved by suitable solvers. The performance of the numerical scheme is assessed and tested on specific test problems and the comparisons are given with other methods existing in the recent literature. The numerical outcomes indicate that the method yields highly accurate results and is computationally more efficient than the existing ones.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
W. M. Abd-Elhameed ◽  
E. H. Doha ◽  
Y. H. Youssri

This paper is concerned with introducing two wavelets collocation algorithms for solving linear and nonlinear multipoint boundary value problems. The principal idea for obtaining spectral numerical solutions for such equations is employing third- and fourth-kind Chebyshev wavelets along with the spectral collocation method to transform the differential equation with its boundary conditions to a system of linear or nonlinear algebraic equations in the unknown expansion coefficients which can be efficiently solved. Convergence analysis and some specific numerical examples are discussed to demonstrate the validity and applicability of the proposed algorithms. The obtained numerical results are comparing favorably with the analytical known solutions.


Author(s):  
S. C. Shiralashetti ◽  
Lata Lamani

This article gives an effective strategy to solve nonlinear stochastic Itô-Volterra integral equations (NSIVIE). These equations can be reduced to a system of nonlinear algebraic equations with unknown coefficients, using Bernoulli wavelets, their operational matrix of integration (OMI), stochastic operational matrix of integration (SOMI) and these equations can be solved numerically. Error analysis of the proposed method is given. Moreover, the results obtained are compared to exact solutions with numerical examples to show that the method described is accurate and precise.


2019 ◽  
Vol 4 (8) ◽  
pp. 49-54
Author(s):  
Abdurkadir Edeo Gemeda

In this paper, generalized shifted Legendre polynomial approximation on a given arbitrary interval has been designed to find an approximate solution of a given second order nonlinear two point boundary value problems of ordinary differential equations. Here an approach using Tau method based on Legendre operational matrix of differentiation [2] & [5] has been addressed to generate the nonlinear systems of algebraic equations. The unknown Legendre coefficients of these nonlinear systems are the solutions of the system and they have been solved by continuation method. These unknown Legendre coefficients are then used to write the approximate solutions to the second order nonlinear two point boundary value problems. The validity and efficiency of the method has also been illustrated with numerical examples and graphs assisted by MATLAB.


2016 ◽  
Vol 21 (4) ◽  
pp. 448-464 ◽  
Author(s):  
Waleed M. Abd-Elhameed

This paper analyzes the solution of fourth-order linear and nonlinear two point boundary value problems. The suggested method is quite innovative and it is completely different from all previous methods used for solving such kind of boundary value problems. The method is based on employing an elegant operational matrix of derivatives expressed in terms of the well-known harmonic numbers. Two algorithms are presented and implemented for obtaining new approximate solutions of linear and nonlinear fourth-order boundary value problems. The two algorithms rely on employing the new introduced operational matrix for reducing the differential equations with their boundary conditions to systems of linear or nonlinear algebraic equations which can be efficiently solved by suitable solvers. For this purpose, the two spectral methods namely, Petrov-Galerkin and collocation methods are applied. Some illustrative examples are considered aiming to ascertain the wide applicability, validity, and efficiency of the two proposed algorithms. The obtained numerical results are satisfactory and the approximate solutions are very close to the analytical solutions and they are more accurate than those obtained by some other existing techniques in literature.


Sign in / Sign up

Export Citation Format

Share Document